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1. Executive Summary

Recent improvements in underwater welding have led to the increased use of wet and dry hyperbaric

welding within the marine construction industry. The general acceptance of underwater welding processes

has been further advanced by the standardization of methods, procedures, and certification requirements

provided by the American National Standards Institute (ANSI)/Amencan Welding Society (AWS) D3.6

Specification for Underwater Welding.

A dedicated effort has been made by the AWS D3B Subcommittee on Underwater Welding to pursue all

available means to improve the levels of productivity and safety across the underwater welding industry.

One approach which has become a priority of the committee is the inclusion of Human and Organizational

Factors considerations within the Specifications in the form of an HOF supplementary annex.

This paper provides a brief summation of HOF principles, a methodology for developing an HOF Annex for

underwater welding, recommended content and structure for such an annex, and a combined qualitative and

quantitative procedure for determining the utility of recommended HOF improvement applications.
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2. Literature Review

Research required for the development of a Human and Organizational Factors Annex to the AWS

Specification for Underwater Welding began with an in depth literature review. The basic process for

conductmg the comprehensive literature review is shown in Figure 1 . The first step in developing the

Annex was to refer to the existmg AWS Specifications for Underwater Welding to identify the mission and

Human Factors

Theory

Existing

Human Factors

Specifications

AWS
Specifications

Review of

Underwater
Welding
Data

Review of

Diving

Data

Recommended
HOF

Applictations

for AWS
Specifications

Figure 1- Literature Review Process

objectives of the document and to develop applicable content objectives for the new HOF Annex to be

added to the document.

After a thorough review of the AWS document, existing Human Factors specifications were sought out as

benchmarks for the annex. Specifically, the existing specifications provided a starting point for both the

content and structure of the annex. Upon the determination that existing specifications were too broad in

scope to provide an ideal model for the HOF annex, an intensive human factors study was conducted. By

not only researching the human factors theory used to develop the existing human and organizational

factors specifications but also the human factors theories not found in the specifications, the development

of a more comprehensive annex was possible.
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The next step in the literature review was studying all available underwater welding data and general

diving data and applying this data to the annex. The final step in the process involved applying human

factors theory to the available diving and underwater welding processes in the required AWS specification

format.

2.1 .1 Human and Organizational Factors (HOF)

Any activity that involves people is subject to flaws and defects. The study of Human and Organizational

Factors is an attempt to characterize these flaws and defects, determine their causes, and minimize the

effects these flaws and defects have on the activity at hand. Since no two people think or react to inputs in

exactly the same manner, attempting to understand HOF is a daunting task. Not surprisingly, HOF studies

incorporate many specialties which include, medicine, ergonomics, organizational behavior, group

dynamics, and human factors engineering (HFE). Likewise HOF techniques have been employed at some

level in most industries. Hee provides a summary of the history ofHOF studies and a summary of HOF

assessment methods which have been used in numerous industries.

2.1 .2 Probabilistic Risk Assessment and Human Reliability Assessment

Probabilistic Risk Assessment techniques were first used in the nuclear power industry. The general

structure of the Probabilistic Risk Assessment (PRA) was established in 1975 with the publication of the U.

S. Reactor Safety Study. The PRA involves the following procedural steps:

• Identify the sources of the potential hazard.

• Identify the initiating events that could lead to this hazard

• Establish the possible sequences that could follow from various initiating events using event trees.

• Quantify each event sequence using data or judgment regarding the frequency of the initiating event

and the probability of failure on demand of the relevant safety systems.

• Determine the overall system risk. This will be a function of the frequency of all possible accident

sequences and their consequences.

While the PRA was one of the first effective methods of assessing risks in critical systems, it failed in one

important aspect. It ignored the role of human factors in these systems. For example in studies of nuclear

power plant significant event reports conducted independently by Rasmussen and the Institute of Nuclear

Power Operations (INPO, 1984), human performance was the cause of44% and 52% of the incidents,

respectively.
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Human Reliability Assessment (HRA) techniques have been devised in an effort to better evaluate

complicated engineered systems by including the effects of the human interface with the reliability of the

hardware and software.

The study of human and organizational factors and their effect on system reliability is still in its relative

infancy. Nevertheless, there are many HRA models to chose from. There are several Human Reliability

Assessment (HRA) techniques which have evolved in the last decade. A summary of some of these models

can be found in Table 1

.

The majority of these techniques are quite similar to PRA with human and organizational components

included in the system model. HOF is incorporated into most HRA models through four key procedural

steps.

• Identification of the system functions that may be influenced by human factors.

• Listing and analysis of the related human operations by performance of a detailed task analysis.

• Estimation of the relevant error probabilities using a combination of expert judgment and available

data.

• Estimation of the effects of human errors on the system failure events.

While at first glance application of these procedures may appear simple, further investigation into most

Model Author (s) Description

Technique for Human hardware component; handbook of 27 HOE probability

Error Rate Prediction tables, event tree with performance shaping factors

(THERP) Swain (PSF)

Operator Action Trees Hall, Fragola, Differentiates between procedural and cognitive

(OATS) Wreathall errors, includes PRA analysis

Empirical Technique to combined application of five error probability

Estimate Operators' errors parameters, K1 to K5, including stress, routines,

(TESEO) Be llo & Colomari ergonomics
Evaluates errors of operators responding to abnormal
plant conditions, seeks to identify various modes of

Confusion Matrix Potash misdiagnosis for a range of possible events

Humphreys, Provides a means of eliciting and structuring expert

Success Likelihood Index Embrey, Rosa, judgements, generates models thai connect error

Methodology (SLIM) Kirwan, and Rea probabilities with the factors that influence probability

Systematic Human Action

Reliability Procedure Not a model but a technique for selecting an

(SHARP) Hannaman appropriate HRA model

Table 1- Common HRA Techniques





Development of an HOF Annex for Underwater Welding

systems reveals the process of human reliability assessment to be quite complex. There are many theories

about how and why people and organizations interact with system hardware and software. Additionally, an

accepted standardized HRA procedure which provides objective output does not yet exist. For these

reasons it is often necessary to develop system specific human reliability assessments.

Since the complexity of the human and organizational factors problem demands a variety of different HRA

techniques an analysis of the most important features of an HRA model is quite useful. Such an analysis

was performed by Hannaman and the results are summarized below.

• They should be compatible with and complement current PRA techniques.

• They should be scrutable, verifiable, and repeatable.

• Their application should result in quantification of crew success probability as a function of time.

• They should take account of different kinds of cognitive processing (i. e. skill-based, rule-based and

knowledge based levels of performance.)

• They should identify the relationship to the model of various performance-shaping factors.

• They should be comparable to the highest degree possible with existing data from system experience,

simulator data, or expert judgment.

• They should be simple to implement and use. They should help to generate msights and understanding

about the potential for operators to cope with the situations identified in PRA studies. (Hannaman,

1984.)

2.1.2.1 Human Factors Standards

To date several different human factors standards have been developed. In general these standards were

established to aid in the development of plans to implement human engineering design criteria for

particular high risk systems. A brief synopsis of several Human Factors Standards is provide below.

IEEE Guide for the Application ofHuman Factors Engineering to Systems. Equipment, and Facilities of

Nuclear Power Generating Stations - This document is designed to provide guidance to management and

engineers to develop an integrated program for the application of HFE in the design, operation, and

maintenance of nuclear power generating stations. An ongoing program is necessary to ensure that HFE is

an equal design consideration with the traditional engineering disciplines in those activities that have a

significant human interface.
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This standard lists many of the types of factors to be considered when designing human interfaces and a

detailed flow chart of the design process for developing systems which include human mterfaces. It does

not provide guidance in operations of systems. (See Appendix A)

Standard Practice for Fl337-91 HUMAN ENGINEERING Program Requirements for Ships and Marine

Systems. Equipment, and Facilities - This practice establishes and defines the requirements for applying

human engineering to the development and acquisition of ships and marine systems, equipment, and

facilities. These requirements are applicable to all phases of development, acquisition, and testing and

should be integrated with the total system engineering, development, and test effort. These activities

should be tailored to meet the specific needs of each program and the milestone phase of the program

within the overall life cycle. The criteria provided in this standard should be applied directly to underwater

welding systems. This standard does not provide guidance in operations of systems. (See Appendix B)

ASTM Fl 166-95a Human Engineering Design for Marine Systems. Equipment, and Facilities - This

standard of practice establishes general Human Engineering Design criteria for marine vessels, marine

systems, subsystems, and equipment. It provides a useful tool for the designer to incorporate human

capabilities into a design, and it presents specific, detailed human engineering design criteria, principles,

and practices. This standard does not provide guidance m operations of systems.

2.1.3 Underwater Welding

2.1.3.1 The Industry

Since with the first hyperbaric weld in 1965 and the fust documented structural wet weld in 1970,

underwater welding has become an important tool in the repair of marine structures. The ability to repair

these structures in place underwater has saved the oil industry, alone, millions of dollars. These savings,

coupled with aging platforms and the trend in the oil industry to go deeper in the search for petroleum has

resulted in the growth of the thriving underwater welding segment of the commercial diving market.

Grubbs et al. provide a well documented history of underwater welding as well as basic safety

requuements, procedures, and three example applications of underwater welding. (Grubbs et al, 1996)

The underwater welding industry has worked diligently over the past three decades to improve the

underwater welding processes in an effort to increase business through further promotion of underwater

welding. These intense efforts are well documented by the American Welding Society (AWS, 1981 ) and

the American Bureau of Shipping (ABS, 1995)
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2.1.3.2 Processes

There are several underwater processes currently available for in place welding of ships, platforms, and

pipelines. Most of these processes are similar to the corresponding surface processes except they are

performed at depth and in some instances in a wet environment.

Brief synopses of the common types of underwater welding as described by Sisman are provided below.

(Sisman, 1982)

2.1 .3.2.

1

Manual Metal Arc Or Shielded Metal Arc Wet Welding

The most widely used wet welding method is simply an extension of surface arc welding into the

underwater environment. This process is identical to the typical surface manual metal arc welding in which

short, flux-coiled electrodes are used. The standard equipment and continuously improving reliability of

this procedure have led to the increased use of several underwater arc welding techniques.

Manual metal arc welding utilizes the electric arc created between a flux-covered metal electrode and the

workpiece. The electrode is burnt and consumed in the process, providing the metal necessary to fill the

weld. The heat developed by the arc melts the parent parts, the core wire, and the flux covering. For use

underwater, the surface equipment is insulated at the cable joints and torch and waterproof electrodes are

used. The flux covering decomposes under the action of the gas and shields the molten metals from the

surrounding water. (Sisman, 1982)

2.1.3.2.2 Gas Shielded Arc Welding

Typically tungsten inert gas welding (TIG) in which an arc is struck between a non-consumable tungsten

electrode an the workpiece. Filler material in the form of bare metal rod is added into the molten pool by

the diver/welder. An alternative method is metal inert gas welding (MIG), in which an arc is struck

between a consumable bare metal wire electrode fed from a reel into the weld pool.

2.1.3.2.3 Dry Hyperbaric Welding

This method utilizes the flux shielded or the gas shielded methods described above with the welded area

enclosed in one of three ways.

Full-sized habitat : an open bottomed chamber enclosing the whole weld are, the welder, and his equipment

and filled with an appropriate gas mixture at ambient pressure. The diver/welder may be dressed in either

lightweight diving equipment or surface type breathing apparatus.
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Mini habitat where inert gas or air displaces water from the upper portion of the diver/welder's body and

the weld area. The diver/welder's lower torso remains immersed in water at the open bottom of the

habitat.

Portable dry box covers the weld area only. Diver/welder is outside with only his or her hands reaching in.

Gas metal arc (GMA) or MIG is normally used. A gas, usually and Argon mixture, is interdicted to

displace the water in the box. The diver works from outside the transparent box, reaching into the opening

on the underside. A vent in the top of the box is used to clear the welding fumes.

2.1.3.2.4 One Atmosphere Welding

In this type of welding, the welder is transported under pressure in a one atmosphere transfer submersible

to an underwater chamber in which the environment is maintained at one atmosphere. Water sealing

presents a problem with this method. This type of weldmg is identical to dry hyperbaric welding with the

exception that the welder remains at atmospheric pressure throughout.

2.1.3.2.5 Techniques

There are two principal underwater arc weldmg techniques. Using the 'touch' or 'drag' technique, the

diver/welder maintains constant contact between the electrode covering and the work. The electrode is

dragged across the work, and pressure applied by the diver/welder causes the deposit of a small series of

beads. This technique is ideal for fillet welding. The more difficult 'manipulative' or 'weave' technique

requires maintenance of a constant arc without the application of direct pressure. This procedure calls for a

very experienced operator.

The limiting factor for use of either technique is the diminished weld strength resultmg from the water's

high rate of cooling of the weld pool. As a result of this metallurgical problem, applications of wet

weldmg for structural quality welds are somewhat limited.

2.1 .4 Current HOF in Underwater Welding

To date there is no publicly available database dedicated solely to the occurrence of underwater welding

accidents as a function of human and organizational factors. In fact, limited accident data is available

describing either commercial diving casualties or casualties occurring during marine welding operations.

The lack of adequate accident data has been a subject of recurring debate among the commercial diving

industry, primarily due to the industry's insurance difficulties. Without the facts and figures necessary to

present realistic diving risks to underwriters, diving contractors are unable to convince underwriters to

reduce premiums for diving insurance. (MTS, 1978) More importantly, from a safety promotion

prospective, better recording and analysis of diving and underwater welding accident data is needed to
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probabilistically determine the causes of underwater welding accidents in an attempt to focus efforts on

accident prevention.

Publicly available actuarial data is limited at best. Such data on commercial diving fatalities is particularly

scarce, but data on recreational SCUBA diving is available. It has been estimated that two million SCUBA

divers participated in the sport in 1980. As a result of those dives, 116, 128, and 120 accidental deaths

were reported in 1978 through 1980, respectively. (National Safety Council, 1989) According to the

National Safety Council, the estimate of total divers is crude, and it is impossible to distribute the number

of fatalities according to age, location, or diving experience.

The Divers Alert Network (DAN) provides extensive data on recreational SCUBA diving accidents.

Generally, DAN does not publish accident data on commercial diving, but one DAN official responded to a

request for data on underwater welding accidents by stating that DAN has received reports of two fatalities

in the past 8-10 years involving underwater welding/cutting. Both fatalities were the result of the

explosion of entrapped hydrogen. (Saxon, 1997)

Elliot and Davis subdivide diving accidents, commercial and recreational, into three broad categories

according to circumstances: (1) Accidents

Table 2- U. S. Diving Fatalities - National Underwater *»* occur whlle Ae d,ver is m the water -

Data Center Statistics
(2) Accidents of decompression, and (3)

Coincidental illness or physical injury.

While a common outcome of the first

Occupational Underwater Diving Fatalities Yearly 1970-1978
category of accidents is a fatality by

1970 1971 1972 1973 1974 1975 1976 1977 1978

17 6 9 12 19 17 15 23 13

drowning, decompression accidents are

normally identified on the surface after

the dive and treated successfully using

recompression therapy. Elliot and Davis clearly indicate that many of the accidents in all three categories

are the result of a succession of causes, each of which might have been corrected had it occurred alone In

combination these causes may render the diver unable to cope, and they often lead to panic or ultimately

death. (Elliot and Davis, 1982)

The National Underwater Accident Data Center collected data on diving casualties occurring with in the

United States from 1970 to 1978. Results of this study involving occupational divers are summarized in

Table 2. This study did not provide a detailed numeric breakout of causes, but case discussions in the

narrative demonstrated a high incidence of non-descript human error associated with these fatalities.

Furthermore, this study cited the organizational trend in the offshore industry of outsourcing diving

operations to private contractors as a factor leading to commercial diving accidents.
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The North Sea is the

geographic area with the

most extensive and accurate

data on diving casualties in

the commercial diving

industry. Results of the

study shown in Figure 2,

identified main causes of

diver fatalities from 1971-

1977. 35%ofallthe39

fatalities were considered to

be caused by human factors.

This study also suggests that

a fraction of the remaining causes should be classified as human errors because of their dependence on

human behavior.

Maintenance

8^ Riyscal Condition

5%
IHknown

5%

Drvng Supervision

8%

Medical Supervision

2%

Unsuited/Lack of

Equpment

8%

nadequate Tramng

11%

Figure 2 - Main Causes of Diver Fatalities in the North Sea 1971-1977 based

upon 39 Deaths

Using all the available diver accident data in the North Sea from 1971 to 1983, Jacobsen estimated the

overall annual individual fatality rate from a diving accident on the Northern Continental Shelf as 3.9 X

Table 3 Diver Fatality Rate Estimates On The Norwegian Continental Shelf

Fatality Measure

Activity Exposure

Surface

Oriented

Dive

Bell Diving
Chamber

Stay

No of fatalities

Fatalities per dive

Fatalities per hour activity

Annual "individual fatality' rate

estimate

3 7 2

1.80E-04 2.80E-04 -

2.70E-04 3.00E-05 9.60E-07

3.90E-04

1 OE-4 as shown in Table 3

Interestingly, other research conducted on North Sea accident figures suggests that at least fifty percent of

all North Sea diving accidents occur from air diving as opposed to deeper saturation diving. Research

conducted on 47 fatal diving accidents in the North Sea, summarized in Table 4, concluded that most fatal

diving accidents are caused by malfunctioning equipment or mistakes in the handling of equipment. In

approximately another 10-20% of the accidents a "malfunctioning diver physiology" contributed to the

fatal outcome. .

10
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Malfunctioning equipment 15

Inappropriate training and panic 6

Trauma and surface drowning 5

Inappropriate equipment 4

Medico-physiological 4

Temperature problem 3

Medically unfit 2

Unknown Cause 2

Table 4 - Factors Behind Diving Fatalities in the North Sea 1971 -1983 (Ornhagen, 1986)

A study of all marine welding accidents in the Gulf of Mexico was conducted by the U. S. Minerals

Management Service (MMS). Results of this study showed that 70 percent of the 90 reportable welding

accidents between January 1, 1967 and September 30, 1983 were caused by "lack of proper site

preparation, coordination and supervision (46%)," or "failure to properly isolate potential source of fuel

and/or flush inert the work area (34%)." Figure 3 provides a summary of accident causes. (Danos, 1984)

Brief descriptions of each of the incidents were included in the study. According to the descriptions

provided, only one of the ninety reported welding accidents involved underwater wet welding. This

accident resulted in a fatality.

Several attempts have been made to acquire underwater welding safety statistics directly from U.S.

commercial diving contractors with limited success. Most companies appear reluctant to release safety

statistics for fear of relinquishing a competitive advantage.

Couch et al emphasize the failure of many industry codes to address accident reporting procedures or

safety specifics, presumably for reasons of potential liability. Mere reference to safety documents is not

considered adequate for most of these documents do not address safety issues specific to underwater

welding. (Couch, 1995)

11
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What is the significance of the results of all of the studies cited above? These studies suggest that diving

and welding accident and fatality rates are particularly sensitive to human errors; therefore, the application

of HOF principles is a necessary tool in improving the reliability of diving and welding systems. Since

underwater welding is clearly a direct combination of diving and welding, HOF are extremely important in

its success, and any opportunities to decrease the incidence of human error in underwater welding systems

should be vigorously pursued.

Improper site

preparation

32%

Improperly

prepared area

1%

Poor housekeeping

4% No protective

Failure to

isolate/flush inert

47%

Defective

Equipment

1%

Improper layout or

Employee design

devices Equipment failure negligence

2% 2% 10%

1%

Figure 3 - Causes of Welding Accidents in GOM 1967-1983

2.1.5 HOF in Productivity, Weld Strength, and Durability

Advances in the study ofHOF can also potentially lead to improved productivity in underwater welding

operations. Faster processes and more durable welds will be the result of working to decrease incidents of

human and organizational errors. To date, attempts to address the human element in underwater welding

have been focused on qualification of welder-divers.

Couch, Reynolds and Hanzalek (1994) synopsize various regulatory agencies' present approaches to the

qualification of underwater welders and address the difficulties involved in qualifying personnel in this

multitude of different procedures in an effort to support work under numerous agencies. As a result

underwater welding companies have lost flexibility in carrying out work and have been forced to incur

multiple expenses for seemingly redundant qualifications. In an effort to provide solutions to this problem,

they explore several approaches to qualification. These approaches include standardized mandatory

12
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training, prequalification on the surface, required minimum experience with less difficult procedures,

prequalificarion in NDT, limits on the duration of qualifications, certification by a single agency, and the

application of contingency tests.

Holdsworth and Spencer (1994) illustrate the use of systematized certification programs as an effective

management tool to measure and improve performance of underwater welding. Certification is one of the

most effective methods of lowering risk, improving quality, and enhancing process controls crucial to

underwater welding and construction projects.

13
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3. Analytical Model

3. 1 American Welding Society Role

The organizational structure of the American Welding Society's (AWS) D3b Committee on Underwater

Welding is included in Appendix C. The committee meets at least semiannually.

In recognition of the importance of HOF in underwater welding, D3B has recently begun an effort to include an

informative annex on HOF in underwater welding in the 2003 edition of the Specification for Underwater

Welding. This specification includes the requirements for welding structures or components under the surface

of water. It includes both dry and wet hyperbaric welding and is primarily dedicated to specific performance

requirements of the four individual classes of weld. (AWS, 1997)

The overall goal of development of the HOF annex is to provide specific guidance to underwater welding

operators for the improvement of human and organizational factors inherent in underwater welding. Because

diving is such an integral component of the underwater welding process, human and organizational factors

involved in diving are discussed. However, an attempt is made not to duplicate or, more importantly, contradict

any directives or recommendations of recognized commercial diving authorities. Though heavily weighted

toward the improvement of underwater welding safety, the annex also includes recommendations for the

improvement of human and organizational factors pertaining to the attributes of weld strength and durability.

Format of the annex is governed by the AWS guidelines (AWS, 1994) and subject to the approval of the D3b

subcommittee. It is the hope of D3B that the HOF annex will set a precedent for a specific HOF annex to be

included in all AWS specifications.

During a joint AWS/International Institute of Welding (IIW) meeting in July 1997, the HOF effort was begun.

At the November 1997 meeting, the an initial draft of the HOF Annex was presented to the committee chairman

for review and comment, and the HOF concept was formally submitted to the entire committee.

Furthermore, efforts are currently underway to combine the European Standard (EN) and AWS specifications

for acceptance as an International Standards Organization (ISO) standard and to incorporate a design section

into the AWS document qualifying it as a "standard" rather than a specification. At the November 1997

meeting, a formal request was drafted for the authority to develop an ISO document for Safety, Environmental.

Health, Human and Organizational Factors in underwater welding.
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3.2 Initial Information Collection

3.2.1 Underwater Welding Industry Defined Research Needs

In 1994, experts in the field of underwater welding developed the Prioritized List of Research and Development

Needs in Underwater Welding (ABS, 1995) which provided specific conditions, goals, and recommendations

pertaining to research in underwater welding. Many of the recommended research topics included a focus on

HOF. The following conditions, goals, and recommendations which were taken dnectly from this consensus

document, formed the initial guidelines for the collection of information for the development of the HOF

Annex:

Conditions

• There is a need to depart from traditional approaches and to "break circle."

• All possible, even uncommon, designs and incident technologies at hand should be integrated in the

development process.

• A comprehensive, multi-disciplinary and systematic, scientifically-oriented approach is likely to lead to

real significant process.

• There is a need for coordination and direction in the investigation and development of techniques for

underwater welding.

Goals

• Evaluation of processes from the standpoint of operation in wet and/or dry environment.

• Development of recommended procedures and specifications based on data obtained through use and

qualification of selected processes, technical development, experience of users and operators, and input

from regulating bodies.

Recommendations

• Thud party certifications for wet welders to prevent entrance of diving companies with little welding

experience.

• Modification of codes and standards to include training and experience as a basis for certification.

•

•

Consideration of the effects of restraint. For example restraint can be greater under production conditions

than training conditions.

Incorporation of wet welding into design standards.

• Development of guidelines for damage inspection and repair.

Improvement of equipment: torch design (gtaw, gmaw, and plasma).•
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3.2.2 Benchmarking HOF Efforts of Other Industries

Across many industries HOF approaches consider the system failure causes resulting from human and

organizational errors. These so-called extrinsic causes have been traditionally and incorrectly absent from

failure analyses. The study ofHOF has identified proactive and real time approaches to improving safety. By

focusing on extrinsic causes rather than intrinsic causes of system failures, it has been possible to drastically

increase system safety with minimal effort and expense. Many of the same HOF lessons learned can be

applied across numerous engineered systems without the high cost associated with predicting, measuring, or

simulating extreme intrinsic causes.

HOF program efforts in several industries have proven successful in increasing system safety and reliability.

Excellent examples ofHOF applications are found in the nuclear power industry (Swain and Guttman, 1975).

in the marine industry. (Moore and Bea, 1993), and in the commercial airline industry in the form of Crew

Resource Management (CRM). (Merrit and Helmreich, 1996) Many of the tools utilized by these programs

have been incorporated into the underwater welding HOF annex where applicable.

3.2.3 Field visits

The lack of readily available research data on HOF and safety in underwater welding led to an effort to collect

field data. Three field visits to underwater weldmg training and operations organizations were conducted The

three organizations visited were the College of Oceaneering, Global Divers, and Oceaneenng Incorporated.

Lessons learned from these field visits are included in Appendices B, C, D and were mcluded in the HOF

annex.

The field visits were designed to gam an in-depth knowledge of underwater welding industry standards. A

thorough knowledge of the underwater welding system and corresponding HOF system relationships was

necessary prior attempting to improve system safety. It was realized early on that the only way to improve the

HOF aspects of the system were to approach the problem with humility and to understand that the seeds for

success or failure lie with those that have daily responsibilities for the operations and safety of their systems.

3.2.4 Organization of HOF Information in the Annex

During the initial information collection phase, the format was developed for the organization of the HOF

annex. Information was gathered based on this organization in which human and organizational factors were

classified based on influence types. In this classification system, subheadings of influence type were broken

down into influence attributes and HOF applications.
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3.2.4.1 Influence Types

The common categories of human error which can cause underwater welding accidents are directly affected by

many types of internal and external influences on the underwater welding system. It has been assumed that

there are seven broad influence types affecting underwater welding: 1) individual, 2) team, 3) organizational,

4) procedural, 5)structural, 6) equipment, and 7) environmental.

While all of these influence types are significant, the initial focus of the annex is on the first three influence

types, individual, team, and organizational influences. Procedures affecting underwater welding are thoroughly

covered in the body of the specifications; therefore, they were omitted from the HOF Annex. Additionally,

structural, equipment, and environmental influences on HOE were excluded from the scope of the annex due to

their intrinsic nature. These influence factors shall be considered at a later date during the future development

of the design section of the D3B standard.

3.2.4.2 Influence Attributes

Given that the seven influence types are found within every underwater welding system to some degree, it can

be deduced that certain attributes within each of these broad categories lead to success in underwater welding

operations. In other words, specific HOF qualities can be identified as common in successful underwater

welding systems. Identifying the most successful influence attributes within underwater welding systems was

the next step toward implementing useful HOF tools which can ensure success across the entire industry.

3.2.4.3 HOF Applications

The ultimate arm of the annex development process is to determine specific HOF applications or recommended

practices which, if applied, will result in safe and successful underwater welding operations. These

recommended practices are being developed to instill the successful influence attributes in the overall system

The HOF applications are provided as "nonmandatory recommended practices" within the Specification for

Underwater Welding. Within the specification, the HOF applications are grouped within the influence

attributes, and, likewise the influence attributes are grouped by influence types.

During the analysis each recommended practice was supported with a justification based on information

gathered from the literature review, industry benchmarking, or field visits. Since the annex is intended to be

utilized as a field document, it should be concise and focused on providing clear directives for underwater

welding operators. In order to meet these conciseness and clarity constraints, the final draft of the annex will

not include detailed justifications. Instead these justifications shall be included in the document's commentary

section. Directives and supporting justification are provided together to facilitate ease in reading this

document. Directives which shall be included in the annex are provided in bold.
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3.2.4.4 Interfaces

Often systems comprised of quality components are unsuccessful due to the failure of interfaces between these

components. To eliminate this phenomenon, the annex considers interfaces as a separate category. Within the

interface category, the interfaces of all seven influence types with the three HOF influence types are

investigated. (Appendix G)

3.3 Deterministic Phase

The next phase in developing the HOF annex was to determine the value of each recommended HOF practice.

Ideally, this would be done through a sensitivity analysis of the effect of each HOF on the probability of

system failure. As noted in the literature review, there is a lack of probabilistic underwater welding data on

which to base this sensitivity analysis; therefore, a step back to a deterministic approach was necessary.

The deterministic phase involved defining causal relationships of system failures and then developing a system

model which could be used to test these relationships. The sequence of tasks involved in developing such a

model for the underwater welding system is provided in Figure 4. As shown in the figure, the mitial data

gathering was followed by determining the quality attribute to be studied and defining a system failure.

Next a system life cycle model and a process for developing HOF tools were implemented in parallel. Finally,

several tools were tested using the model. A given tool was evaluated by comparing the risk of system failure

in the tool implement to a baseline risk of system failure. If a tool significantly reduces the risk of failure, it

should be incorporated into the annex. The next section describes the detailed development of the system

model.

3.3.1 Quality and Risks in Underwater Welding Systems

Quality in any engineered system consists primarily of four requirements: (1) servicibilility - suitability for the

proposed purpose; (2) safety - freedom from excessive danger to human life and property damage; (3)

compatibility - the lack of excessive negative impact on the system's surroundings; and (4) durability - the

maintainability of the other three quality measurements during the system's intended life.
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Due to the significant risk of injury to the welder-diver, the safety aspect of the underwater welding system was

often the system characteristic of greatest initial concern. Failure to develop acceptable safety to the welder-

diver has the potential to result in a serious injury or fatality. Consequently, there is a limited acceptable

margin for error in a safety component in any underwater welding system. Ideally, this margin for error or risk

can be determined for each potential failure of the system under consideration in order to provide a means of

comparison between safety risks.

Safety risks associated with underwater welding can be expressed as the product of the likelihood of a

hazardous event, e.g. an explosion resulting in a diver casualty and the consequences that could be associated

with that event. (Bea, 1997) First a simple comparison was used to determine the consequences of a safety

failure. Then a life cycle approach for determining likelihood of system failure is discussed.

There are various ways to measure the consequences of an underwater welding accident. Perhaps the most

pragmatic approach is to utilize a financial measurements. Though it was nearly impossible to determine the

value of a welder-diver's life, it was possible to estimate the potential financial costs to a diving contractor
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resulting from an injury to or the death of a welder-diver.

Based on estimates from diving insurance underwriters, the average jury awards for diving industry accidents

on behalf of one diver is approximately $1.2 Million.' Such high costs were the indirect result of court rulings

which determined that welder-divers may collect awards as "seamen" based the Jones Act of 1970. This Act

had included seamen under the Federal Employees Liability Act.

3.3.2 System Life Cycle Model Development

Traditional approaches to safety management have been concentrated on identifying and correcting intrinsic

safety defects. Applying these traditional approaches to underwater welding incorrectly implies that all

underwater welding accidents result from hardware or software problems within the underwater welding

systems, e. g. the diver's life support system (DLSS), the welding system, or the platform's lock out/tag out

systems. Often these approaches are reactive. In other words, when a failure in safety occurs in a system

component, effort is concentrated on preventing future failure in that component only.

There are two primary flaws to such traditional approaches. First, it is rare that an accident occurs in the same

manner twice. Often a whole row of events precede the final event that hurts or kills the diver. Secondly, these

approaches often ignore the most common category of cause of safety failures, extrinsic causes - human and

organizational factors (HOF).

The earlier review of welding and diving accidents revealed that they were often caused by operator error

compounded by management related factors that influenced the operations and emergency preparedness While

every diving or welding accident is different, many of them have the same signature. They occur due to similar

issues such as a breakdown in communications, incentives, selection of properly trained and experienced

personnel, etc.

Multiple disciplines including human factors engineering, organizational behavior studies, and process safety

procedures must be incorporated into the HOF improvement process as required by the scope of the task. Some

of the activities which may be necessary include:

• Determining the relevance of prior Safety and HOF studies, reports, and other pertinent documents

• Conducting HOF assessments (i. e probabilistic, narrative, checklist/questionnaire, ranking, or indexing

assessments.)

• Investigating current design practices to identify HOF concerns

The 1977 Diving Insurance Symposium Proceedings cited awards of $700,000. This sum was discounted forward to 1997

based on a relatively conservative annual inflation rate of 3% per year.
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• Establishing trade-offs ofHOF considerations with design, operation, testing, or maintenance

considerations.

The study and improvement ofHOF should be considered an ongoing activity with respect to any future design.

modification to existing designs, or evaluation of existing designs.

Due to their substantial impact, human and organizational factors (HOF) considerations should be an integrated

in all phases of the underwater welding life cycle including design, construction, operations, testing, and

maintenance.
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3.3.3 Underwater Welding HOF Assessments

Figure 5 - Safety HOF in Underwater Welding
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A full schema, life cycle model developed by Bea has been modified and applied underwater welding in Figure

5, This model implies the extrinsic causes of failure in safety

are rooted in malfunctions developed in one of the four phases found in every engineered system life cycle

design, construction, operation, or maintenance. Consistent with the operations focus of these AWS D3b

Specifications for Underwater Welding, the implementation ofHOF considerations into the system will begin

with the operations phase It is important, however, for the reader to recognize the inherent interactions between

the operations and the other three phases of the underwater welding systems, design, construction, and

maintenance. In fact, the extension of HOF applications into the design, fabrication, and maintenance of

underwater welding systems is highly encouraged and the operator's role in feeding back to these three phases

is included in the specification.

Within the operations phase of the life cycle, the underwater welding system can be broken down into three

components, a diving component, a welding component, and a topside operations component as shown m

Figure 5. Though these three components combined constitute the underwater welding system, typically each

component is designed, constructed, operated, and maintained separately based primarily on constraints from

other functions of these subsystems. For example, many underwater welding systems are adaptations of surface

systems which were not originally designed for use in the water. Thus, safety features added to protect against

the hazards found underwater are often awkward modifications added to a surface welding system, not features

of well integrated underwater welding system designs. Similarly, many mechanisms used for lock out or tag

out were designed to protect the moving equipment during maintenance and, therefore, may not be idealK

suited to ensure the welder-diver's safety.

During operations it is the responsibility of the welder-diver, the dive team, and the supporting orgaruzanons to

bring together all three components in a safe, coherent underwater welding system. As is any system with

many complex man-machine interfaces, there is a high susceptibility to errors occurring in its most valuable

component, the human component, or, specifically, the welder-diver. In underwater welding such errors can

generally be classified as individual errors such as mistakes, slips, and limitations or organizational errors such

as communication malfunctions and selection and training malfunctions.

Mistakes are cognitive malfunctions of perception, interpretation, decision, discrimination, diagnosis and

action. Slips occur when the outcome of an action was not what was intended; therefore, slips are normally

easily recognized and corrected. Limitations are malfunctions which occur as the result of excessive fatigue,

stress, or diminished senses. Communications malfunctions are simply the ineffective transmission or receipt

of information. Selection or training malfunctions occur when personnel are not suited, educated, or practiced

for the activities. (Bea, 1997)

HOF that occur during the operations phase can be related first to the individuals that operate the system. The

actions or inactions of these operators are influenced to a very significant degree to the organizations that they

work for and with. In the case of the welder-diver, these organizations include the weld-dive team and the
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corporate administrative organizations that control the dive team. Also the individuals are influenced by the

interfaces between the system operators and the procedures, structures, equipment, and environment

The probability of the system failure due to extrinsic causes from operations was calculated using a life cycle,

reliability based formulation modified from Bea. (Bea, 1997) Using this approach the probabilities of each

influence factor causing a human error was determined based on Table 5. This data was collected by the

nuclear safety industry.

1

new or rarely performed task, extreme stress, very little time, severe

distractions and impairments

1.00E+00
|

highly complex task, considerable stress, little time, moderate

distractions and impairments

1.00E-01

complex or unfamiliar task, moderate stress, moderated time little

distractions and impairments

1.00E-03

difficult but familiar task, little stress, sufficient time, very little

distractions or impairments

1.00E-04

simple, frequently, skilled task, no stress, no time limits, no distractions

or impairments

1.00E-05

Table 5 - Mean Rates of Human Error

The probabilities of human errors for given influence factors were assumed to be lognormally distributed.

These probabilities were then summed using the Algebra of Normal Functions (AONF) in order to determine

the overall probability of human error for a given underwater welding subtask. Likewise the probabilities of

human enor for given subtasks were similarly combined to determine the probability of human error in

underwater welding.

Welding was divided into subtasks based on the subtasks relationships with the most likely system failures:

electrocution, explosion, impact injury, and asphyxiation. See Figure 6 - Welding subtask breakdown
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OPERATIONS

WELDING OPERATIONS

1
! Explosion safety subtask Electrical safety subtask

DC AC

Rigging safety subtask
Respiration safety

subtask

Figure 6 - Welding subtask breakdown

3.3.4 Underwater Welding System Error Tolerance

The deterministic framework already discussed identifies the effect of organizations and interfaces with system

components on an individual's propensity for human error, but it does not explore the underwater welding

system's error tolerance to such human error. Error tolerance reflects the system's fragility, its ability to detect.

and/or its ability to correct the human error prior to system failure.

A comprehensive review of the error tolerance of the underwater welding system includes the error tolerance of

the system given an error in the electrical safety , explosive safety, respiration safety, or rigging safety

subtasks. A mathematical representation of the systems error tolerance can be developed as a fragility analysis

A output of the fragility analysis is the probability of a system failure given a human error. The input into the

fragility analysis is the probability of occurrence of the human error.

3.3.4.1 Electrical Shock Fragility Analysis

As shown in Table 6 effects of electrical charges on the human body vary with the amount of current going

through the body. Approximately 500 milliamperes ofDC current results in possible ventricular fibrillation

IN accordance with resistance of the human body to electric current is Current varies as a function of
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resistance through the body. Resistance is low for soft wet skin ( 1 OOOohms) compared to dry skin ( 1 00,000-

200,000 ohms (Marshall)

Effect

Current in milliamperes

Men
DC
Women Men

AC
Women

Siigth sensation to hand 1 0.6 0.4 0.3

Perception threshold 5.2 3.5 1.1 0.7

Shock - not painful, no loss muscular

control 9 6 1.8 1.2

Shock- painful, loss of muscular control 62 41 9 6

Shock - painful, let go threshold 76 51 16 10.5

Shock - painful, and severe 90 60 23 15

Shock - possible ventricular fibrillation

effect from 3-second shock 500 500 100 100

Table 6 - Current at which people experience various effects from electricity.

Path through Resistance in ohms

Hard, dry calloused skin on hand 500,000 to 600,000

Soft, dry skin on hand 100,000 to 200,000

Soft, wet skin 1000

Internal body from hand to foot 400 to 600

Ear to ear About 100

Table 7 - Resistance of human body to electric current

Calculations of the probability of failure given that the human error results in a shock of the mean current value

of .334 amps DC are provided in Appendix H. By performing similar calculations over the range of currents

encountered in the process, a probabilistic data fragility curve could be developed relating probability of error

to the likelihood of death or serious injury.

3.3.4.2 Explosion Fragility Analysis

The release of energy which occurs during an explosion in a pipeline is a function of the specific heat of the

product, the pressure inside the pipe, the volume of pipe, and the ambient pressure. The high heat of electrical

sparks is equal to thousands of degrees centigrade and, generally, sufficient to ignite all gases and vapors.
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In most cases involving underwater welding, an explosion would need only to penetrate the welder-diver's

helmet in order to cause death by drowning. The force needed to penetrate the welder-diver's helmet is a

function of the strength of the glass of the face shield and the distance between the explosion and the diver's

helmet. Since welder-divers perform welding with their head only centimeters from the weld arc, it is

reasonable to make a qualitative judgment that most explosions during underwater welding would result in

death. A conservative estimate of a 90% probability of death or serious injury given an underwater explosion

caused by underwater welding was used in the model.

3.3.4.3 Toxic Inhalation Fragility Analysis

A determinarion of the system fragility given an accidental inhalation of toxic gases requires specific

knowledge of the toxic gases involved. Additionally, death or serious injury from inhalation of toxic gases

found in an underwater welding habitat is a function of pressure, length of exposure, concentration, etc.

Due to the complexity of respiratory injuries, a reasonable fragility determination is beyond the scope of this

paper.

3.3.4.4 Rigging Error Fragility Analysis

Diver injury due to impact is a function of the force of the impact, the location of the injury, and the tune

necessary to stop the bleeding resulting from the injury. Determining a suitable fragility curve for rigging

errors is again very difficult because no empirical safety data was readily available. It is however possible to

make a very rough estimate of underwater impact injuries from an analysis of incidence rates for fatal accidents

resulting from falls. According to a study by Griffiths and Fryer 250 fatal accidents occur per million workers

each year as a result of falls. It seems reasonable that the risk of being seriously injured during underwater

rigging operations would be close to the risk of a deadly fall on the surface. (Kinchin, 1982)

3.3.5 Effect of HOF Applications

Once the relevant fragility analyses were conducted, it was possible to determine the overall extrinsic

probability of system failure assuming none of the HOF applications suggested had been applied. This

probability of failure could then be compared to the probability of system failure given a specific HOF

application.

In order to determine the probability of failure given a specific HOF application, the mechanism for

improvement of the given application was determined. In general there are four mechanisms by which HOF

can be used to improve system reliability: (1) mitigation of error (2) improvement in detection, (3)

improvement in correction, and (4) improvement in system fragility.

An HOF application which improves detection provides for quicker or more accurate detection of a human

error which could cause system failure. Likewise an improvement in correction increases the probability that
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the system will not fail because the human error will be corrected in tune. Lastly the improvement in fragility

increases the systems human error tolerance.

Another important statistical relationship which must be carefully considered is the correlation between the

likelihood's of different human or organizational errors (HOE). IfHOE are not correlated (p=0), then they are

independent. The occurrence of one type ofHOE has no effect on the occurrence of another type. If HOE are

perfectly correlated (p=l), then the likelihood of one HOE can exactly predict the likelihood of another HOE.

The baseline case assumes likelihood's of HOE are not correlated. Many HOF applications do act to correlate

the likelihood of HOE; therefore, correlation is a variable which may change according to the HOF applications

utilized.

3.3.6 Failure Consequences

Once the probability of failure has been determine, it can be multiplied by the consequences of failure to

determine the overall risk to the system. Based on the definition of system failure chosen, death or serious

injury to the welder-diver, the consequence of failure is the consequence resulting from the loss of the welder-

diver. It is difficult to quantify such a consequence, since it is impossible to accurately quantify the value of a

human life.

One attempt to quantify the consequence of death or senous injury is to determine the average value of

insurance claims which were successfully brought against diving companies in the past However, this

valuation technique requires a determination of party responsible for the human error. A conservative

assumption can be used that regardless of the human error, it is the fault of the diving company. By using this

assumption the diving company can calculate the financial risk of failure as "the probability of system failure

tunes the cost of an a serious injury or death to employee (s)."

3.3.7 Cost Benefit Analysis

In order to accurately determine which HOF applications should be included requires a determination of the

costs of each application and a comparison of these costs with the benefits of utilizing a particular HOF

application. This benefit is equal to overall risk of to the system if the HOF application is not applied.

3.4 Probabilistic Phase

The final phase of development of a viable HOF Annex is a probabilistic phase. This phase would incorporate

an accident and near miss reporting system to gather statistical data regarding the role of human error in

underwater welding. Such a reporting system should collect fragility data for each potential underwater

welding accident. Also human and organizational data should be collected and the probability ofHOE per task

should be calculated.
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4. HOF Tool Development Analysis

This section provides recommended HOF applications to be included in the HOF annex and detailed

justification for each HOF application. These applications were devised based on qualitative data from the

literature and personal interviews.

4.1 Individual Operators - Welder/Divers

According to diving contractors asked by a NIOSH committee about their primary problem in diving safety, all

agreed it was the qualifications of the individual. According to these contractors, it was estimated that

approximately 80-85% of all diving accidents involve the individual on an individual basis.

4.1.1 Selection

Underwater welding is a highly specialized task requiring welder-divers to possess special mental,

physiological and behavioral characteristics. As a result underwater welding firms have a responsibility to both

prospecrive welder-divers and those who will dive with them to select those most fit for diving. Recommended

selection practices are provided below to help firms chose welder-divers and to ensure safer and more efficient

workers.

4.1.1.1 Physiological

Extreme care should be taken to select welder-divers who are physiologically fit to dive. There are

numerous stresses placed on the body during diving which primarily include static and dynamic load on the

lungs, men gas supersaturations during decompression, inert gas narcosis, high pressure neurological

syndrome, oxygen toxicity, and temperature stress. Also underwater welding tasks are typically physically

demanding and require above average levels of strength and stamina.

4.1.1.2 Medical Examination Standards

Medical examinations should be conducted in accordance with the recommendations set forth in the ADC

Consensus Standards. In addition to excluding major disqualifying medical conditions, the examining

physician should identify and give careful consideration to minor, chronic, recurring or temporary

mental or physical illnesses which may distract or cause the welder-diver to ignore factors concerned

with safety.

In accordance with the ADC standards, the examining physicians must have a list of the essential job functions

(Job Description) to review with each commercial diving physical examinations.
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The following job functions are provided as guidance for determining medical examination standards for

welder-divers:

1. Welder-divers shall perform duties including weld setup and weld preparation work including

rigging, materials alignment and materials preparation including beveling, stripping of concrete, and

fitting steel patches or repair plate.

2. Welder-divers shall perform certified welds in wet and/or dry environments. In dry hyperbaric

welding, welder-divers shall be exposed to numerous pressurized gases including welding fumes,

welding gases, soot, and carbon monoxide.

3. Welder-divers shall be required to perform welding inspections of various types.

4.1.1.3 Physical Fitness

While maintaining adequate physical fitness is the personal responsibility of the individual welder-diver,

baseline physical fitness evaluations are recommended prior to acceptance of students into welder-diver

training. Furthermore, periodic physical fitness evaluations are recommended to ensure maintenance of

welder-diver fitness. The importance of physical fitness in underwater welding can not be overstated Some

underwater welding tasks require considerable strength and stamina as well as a reserve of physical strength

sufficient to cope with unexpected situations.

4.1.1.4 Pressure and Oxygen Tolerance Screening

Each welder-diver candidate should complete a hyperbaric pressure test conducted in a hyperbaric

recompression chamber prior to beginning underwater welding instruction. Only candidates who are

known to tolerate decompression well should be selected. The test is designed to determine if the applicant

can successfully adapt to increased atmospheric pressure without adverse physiological reaction

4.1.1.5 Dexterity

A welder-diver's dexterity is directly related to his or her success underwater. Several dexterity tests are

commercially available which could be used to measure a welder-diver's manual capabilities. Typically, the

most successful welder-diver's are those who are ambidextrous.

4.1.1.6 Age limits

The diving profile and task structure should be carefully considered when assigning underwater welding

tasks to welder-divers over 40 years old. While the ADC Consensus Standards do not mandate an age limit

provided the diver meets minimum medical requirements, diving medical research demonstrates a substantial

increase in risk to diver's over 40 years old.
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4.1.1.7 Gender

Gender specific procedures for the selection and medical certification of welder-divers should be

developed. These procedures should include consideration of a history' of hypothermia, strength

measurements, and diver's attitude.

As the result of differing physiology between men and women, selection and medical certification should

involve slightly different emphases. The following parameters are worthy of note:

• It has been suggested that women are more susceptible to hypothermia due to their lower body weight

• Strength of men and women should be evaluated on a task-specific basis and should be adequate for

foreseen circumstances.

• Culturally, there is evidence to suggest that men are more likely to be cavalier about diving safety, more

apt to abuse alcohol, dive when fatigued, or not be up to standard physically.

4.1.1.8 Diet

A balanced diet is recommended. Diving should be avoided for 2 hours following a heavy meal. Light

meals should be taken during the day's diving operations. Liquid intake must always be maintained at

normal or above normal levels. Dehydration is particularly dangerous prior to dives requiring decompression

In most circumstances diet is left to individual discretion.

Alcohol use is discouraged prior to diving operations. Excessive use of alcohol the evening before

underwater welding operations is also discouraged. Alcohol may increase the susceptibility to

decompression sickness, and may enhance heat loss in cold water exposure.

4.1.1.9 Psychological Screening

4.1.1.9.1 Panic and stress

Several precautions are recommended to minimize occurrences of panic in underwater welding. These

precautions include recognition of welder-divers who exhibit high levels of anxiety, counseling of

individuals who are predisposed to panic, and training welder-divers to avoid potential panic situations.

Instructors must be trained to recognize welder-divers who exhibit high levels of anxiety, recommend

further stress training, or, when necessary, deny certification to these welder-divers. On an individual

level, welder-divers must be proactively informed of the risks associated with diving and be able to make

an honest assessment of their personal anxiety level and how it might change in the case of a high-stress

situation underwater. Individuals believed to have a history of high anxiety and panic episodes should

be counseled during initial welder-diver training classes about the potential risks.
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There are some underwater situations that would cause any welder-diver to panic, but there are ways to

minimize the risk a panicked response. Throughout training and operations the welder-diver should be

reminded:

• Not to attempt work clearly beyond their capabilities. They should make sure that they are experienced

enough to conduct the operation being planned. A welder-diver's training does not replace the need

for his buddy's own training.

• To avoid situations requiring unavailable resources. Welder-divers should not try to squeeze in that

last dive at dusk, unless the entire team is prepared to finish it as a night dive. And if you don't have

the proper equipment to make a certain dive, it's better to pass on the dive and do it another day.

• To stay current with their training. It's important that they stay current with skills, and to practice

skills that are appropriate to the type of welding operations being performed.

• Not to dive if it doesn 't feel right. They may be eminently qualified to make the planned dive and may

have done it before, but if something doesn't feel right when it's time to get into the water, they

shouldn't. One's ego should never get in the way of safety.

• To preplan, anticipate, and rehearse actions taken under stress.

Episodes of panic or near-panic may explain many diving accidents and deaths. Recent research indicates that

more than half of all recreational divers reported experiencing at least one panic or near-panic behavior.

Though the levels of panic experienced by the professional welder-diver are assuredly less frequent, panic, at

some level, contributes to many underwater welding emergencies.

Panic can be broken down into two basic classes of anxiety, trail anxiety, a stable or enduring feature of

personality, and state anxiety, a reaction to a situation. Typically individuals who possess high trait anxiety are

more likely to have increased state anxiety. Consequently, such individuals are more susceptible to panic

during welding or diving activities.

Though some forms of interventions (e. g. biofeedback, hypnosis, imagery, and relaxanon) are shown to reduce

anxiety responses in divers exposed to various stressors, these efforts are not considered effective due to their

undesirable side effects. For example, hypnosis has shown to increase heat loss in divers. In some "high

anxious" individuals, relaxation can even lead to increased anxiety and panic attacks known as relaxation-

induced-anxiety (RIA).

4.1.1.9.1.1 Panic Screening Methods

Speilberger's State-Trait Anxiety Inventory is one recommended method of screening prospective diver-

welder's who could be considered as anxiety risks. In research conducted on recreational welder-divers.

it was proven 88% effective in predicting panic.
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4.1.1.10 Mental

4.1.1.10.1 Capacity Measurement

While there is no prescribed minimum IQ requirement for underwater welding, the complex welding and

diving systems involved suggests that welder-divers require at least a basic capacity for understanding

system relationships.

4.1.1.10.2 Mechanical Aptitude

Several aptitude tests are commercially available which measure a person's analytical ability as applied to

mechanical tasks. Though no specific test is currently recommended, any such measure of a welder-diver's

mental aptitude should be weighed in the welder-diver selection process.

4.1.1.10.3 Education

Prior to entrance into underwater welding training, candidates should earn a high school diploma or a

General Educational Development (CED) Certificate. When hiring new underwater welders, it is

recommended that first hand knowledge be obtained on their qualifications. It is recommended that

welder-divers have, at a minimum, completed the curriculum at an accredited commercial diving school.

4.1.2 Training

To prevent unnecessary accidents, HOF principles should be introduced during the earliest stages of

training and incorporated by the instructors and students throughout the entire training phase.

Empirical evidence suggests that diving accidents occur more frequently during training than during operations

4.1.2.1 Entry Level Diving Training

At a minimum, all welder-diver candidates should fulfill Association of Diving Contractors entry level

qualifications prior to acceptance into a specialized underwater welding curriculum.

4.1.2.2 Entry Level Welding Training

In addition to entry level diving qualifications, it is recommended that entry level welder-diver

candidates specializing in underwater wet or dry welding complete a program consisting of topside and

underwater burning and welding training, and advanced courses in the technology of wet shielded arc

welding. This training should include recognition and correction of safety hazards and the use of safe

practices
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In addition to necessary diving requirements, it is recommended that diver-welders entering the field of

hyperbaric wet or dry welding should receive training in all applicable topside certifications, prior to

commencing attempts to earn corresponding certifications underwater.

4.1.2.3 Team Preparation Training

Formalized training should be incorporated into underwater welding curriculum to identify and train

welder-divers in the importance of their roles as a dive team members. Welder-divers participate in

operations requiring them to give and take directions from others, in both a peer relationship and a

supervisor/employee relationship. Individuals must be taught basic responsibilities of being a member of a

team. It can not be assumed that effective attitudes toward teamwork will develop naturally once an

individual becomes part of a team.

4.1.2.4 Panic Training

Welder-divers should be provided with instruction in coping with stress in the underwater working

environment. Emphasis should be placed on in-water skills and comfort, reaction to potential panic

situations, effects of stress and fatigue on performance, fatigue prevention, and the recognition of

individual limitations.

Emphasis should be placed on the importance of in-water skills and comfort during underwater

operations. All levels of training should include the reinforcement of basic in-water skills and individual

emergency procedures (i.e. loss of air, loss of communications, diver recall).

In emergency situations, welder-divers should be taught to "stop, breathe, think, and act." In other words, the

assigned task should be stopped until the welder-diver restores normal breathing, thinks about a proper course

of action to correct the emergency, and acts accordingly.

Welder-divers should be trained in procedures to increase comfort under normal conditions. For

example, they should receive instruction in maintaining effective welding position, management of umbihcals.

and choosing appropriate thermal protection.

Welder-divers should be trained on the effects of stress and fatigue on performance. It is important to

recognize that individual performance is a function of the perceived stress level. If stressors are completely

absent, people may be careless and commit careless errors resulting in poor performance. Conversely, intense

stressors can overwhelm capacity, causing other errors and associated poor performance.Performance can be

improved through training by increasing an individual's performance level for a given stress level and by

developing response rules or templates. Ultimately, training should attempt to increase an individual's

ability to cope when presented with never before seen circumstances; therefore, it should emphasize

continuous information processing and decision making.
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Welder-divers should be trained to recognize and respond to indicators or mental and physical fatigue.

Fatigue and stress are closely related. Underwater welding operations can be highly stressful to the individuals

involved. The long term effects of this stress can lead to both physical and mental fatigue which can impair

coping capabilities. Welder-divers should be taught to communicate honestly their fatigue to their

supervisor.

4.1.2.5 High stress Training

In addition to theoretical studies of stress and its effect on underwater welding operations, welder-divers

should receive practical, in-water high stress training. The training should be conducted in a safe,

controlled environment such as a pool or wet pot and all efforts should be made to simulate realistic at

sea conditions. Care should be taken to encourage questions at all stages of the training, where practical,

and to debrief all training evolutions.

4.1.2.6 Leadership

All welder-divers should receive leadership training at an appropriate level. The critical nature of

working at pressure increases the need for every team member to be prepared to assume a leadership role in a

time of crises underwater.

One approach to assigning responsibility suggests the use of designated diver levels of responsibility, ranging

from the lowest level of diver trainee up to the highest level of corporate authority over diving operations By

being assigned differing levels of responsibility, all diving personnel would know the "pecking order" of the

team, and, hopefully, team members would be more likely to assume leadership roles as necessary.

At the most basic level, all welder-divers should be encouraged to develop safety judgment, to trust that

judgment, and, in a time of perceived danger, to take early, decisive, and effective action to correct the

situation.

Structured leadership training should be formally or informally provided at every level. As welder-

divers advance into supervisory roles, they should receive instruction in project planning, project

implementation, progress monitoring, personnel management, and motivation in addition to technical

competencies.

4.1.2.7 Decision Making/Crisis Management

The importance of decision making during underwater crises cannot be overstated. Consequently, it is

recommended that welder-divers recognize the problems and master the skills of an evolving crisis.

Specifically, each welder-diver should be taught to perceive and recognize an underwater crisis, identify

problems and causes, identify alternatives and consequences, implement appropriate alternatives, and

observe results. Through formal training in these areas and incorporation of prescribed procedures
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during drills, welder-divers will develop instinctive patterns of corrective actions during a rapidly

developing crisis.

4.1.2.8 Conflict Resolution

There is no room for personal or professional conflict during dangerous, high stress underwater welding

operations; therefore, welder-divers should be trained in conflict resolution. Communications, empathetic

listening, seeking mutual gain, and emotional control skills training is recommended.

4.1.2.9 Individual Limitations Training

Welder-divers should be trained that individuals possess strengths and weaknesses which could affect the

safety of the individual or the team. Furthermore, welder-divers should be taught to recognize their

individual limitations and to notify appropriate team members or supervisors when such limitations may

hinder the safety of the operation. It should be stressed that knowing one's own physical and

psychological abilities to cope with applied stressors and to recognize when one's performance is

degrading due to the excessive stress is the personal responsibility of the individual welder/diver.

The competitiveness of many diving programs, the "no whining" mentality of many welder-divers, and the

internal locus of control often found in divers (Morgan, 1995) combine to produce a dangerous side effect.

Often the intense training environment and the competitive nature of young welder-divers leads to attitudes of

invincibility and arrogance. Both of which can be extremely dangerous in the underwater environment. Many

welder-divers are unable to recognize or reluctant to admit individual limitations for fear of social scrutiny or

due to a desire to maximize their diving time. Such behavior can degrade the efficiency of the team and lead to

dangerous consequences including danger to the diver.

One method of training welder-divers to recognize their limits under conditions commonly found in the

underwater environment involves a one day program consisting of an annual medical examinations for divers,

followed by C02 rebreathing, hypoxia exposure, narcosis exposure, and cold water exposure. A welder-diver

who has been through such a program would have a better chance of recognizing when something has gone

wrong during diving. Furthermore the welder-diver would have a better knowledge of personal "limits" and be

more careful. In-House Training Program

Since underwater welding companies use different procedures and instructions, all welder-divers should,

when hired, go through an in-house training program which gives the new employee an introduction to

manuals, procedures, and equipment which is used in the actual company. Comparison should be made

between procedures learned at dive school and those utilized by diving companies. Areas of special

importance for their safety should be pointed out. Communications Training
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Prior to the performance of initial underwater welding, all welder-divers should realize the importance of

communications between the welder-divers and the tender, and they should be taught correct

communications procedures. Communications procedures must include an emphasis on standardization

of phrases and the effective use of "repeat backs." Welder-divers should also be practiced in redundant

communications techniques such as line pull signals and hand signals.

Communications training is crucial to underwater welding safety. Most welding operations require the

diver/welder to have two-way phone communications with the surface at all tunes when the circuit is energized.

This two-way phone is the primary means of communicating when the welder-diver needs the welding circuit

energized and, more importantly, secured. In the event that the topside phones operator hears any sound other

than the predesignated signal for energizing the circuit, the circuit is to be opened immediately. A simple

block diagram demonstrating the topside operators role in communications with the diver is provided in Figure

7.

ENSURE
DEFAULT OPEN

CIRCUIT

WAIT FOR DIVER

SIGNAL
CLOSE CIRCUIT

Figure 7 - Topside Communications with Diver During U/W Welding Operations

4.1.3 Experience

The experience of the welder-diver should always be weighed when assigning personnel to specific

projects. Likewise, more experienced welder-divers should be assigned with less experienced welder-

divers whenever possible.

There is no substitute for quality field experience. Underwater welding is by nature skill-based. The expertise

developed by individual welder-divers over years of wet and/or hyperbaric welding is one of the most valuable

resources which the relatively young industry possesses. It is difficult to acquire the skills needed to be a

successful underwater welder in the classroom or a simulator. While detailed welder qualification procedures

are provided throughout this specification, these procedures do not address the value of proven success in actual

underwater conditions .

Most industry experts agree that the risk of diving casualties associated with underwater welding operations is

significantly lower than risks of diving casualties during general diving operations due to the high experience

level of welder-divers.
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4.1.4 Incentives

During underwater welding operations, careful consideration should be given to individual incentives

provided to the welder-diver to ensure safe operations. The welder-diver should receive incentives

promoting reliability and safety over production, schedule, or cost. Directing a welder-diver to perform

a task is not the same as providing the welder-diver the incentive to perform a task correctly, efficiently,

and safely. Positive incentives are recommended. Such incentives may be monetary or otherwise.

Choosing and implementing incentives should be based on the proven motivational value of the

particular incentives not on a theoretical or perceived value. Incentive programs should include

feedback and monitoring systems.

Welder-divers are professionals who command a high scale of pay and incentives should be put in place

to ensure they maintain a corresponding high level of professionalism and personal responsibility. They

should be held to high standards at all times. Welder-diver personal accountability must be emphasized

at all levels, by diving supervisors, company executives, and government regulators alike.

Traditionally incentives have been based on the depth of dive. This may not be the best choice of a metric

for an incentive system. When developing incentive systems, the variable which represents the most risk

should be measured and incentivized. For example, under a depth pay system, the most qualified,

experienced diver or superintendent may chose a deeper diver with a simple task over a more risky,

shallow dive. As a result a less experienced diver may be placed at the greater risk.

4.1.5 HOF Attributes of Supporting Individuals

Commercial underwater welding operations involve numerous individuals within organizations which

may have a direct or indirect effect on underwater welding operations. While this section specifically

discusses the human factors affecting individual welder-divers, a similar level of effort should be applied

to the consideration of human factors for each supporting individual involved in any capacity with the

underwater welding operations.

Supporting individuals could include a diving ship Master and crew members, topside contractor personnel, and

offshore platform personnel. While an in-depth analysis ofHOF for all supporting personnel is beyond the

scope of these specifications, the results of studies of HOF in the marine industry overall are available for

review. One such study summarizes the causes of severe offshore accidents from 1970-1984 and identifies

corresponding initiating events as the catastrophic compounding of human factors. (Bea and Moore, 1991)
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4.2 Operating Teams

Though the task of welding a bead underwater is normally performed by a welder-diver acting alone, the

preparations for that weld require teamwork by a large number of people m many organizations. The

complex nature of welding and diving systems, combined with the extensive coordination efforts required

in managing marine construction or repair projects, forces all team members to work together to ensure the

safety of the welder-diver and the success of the project.

For the purposes of this specification the underwater welding organization has been divided into two

subsets, the operating welding team and the administrative organization. The role of the administrative

organization will be discussed in the following section.

The operating team, commonly referred to as the dive team consists of all the field personnel responsible

for the day to day operations of diving and underwater welding. The nature of the organization and the

dangerous operations which it performs require the dive team members to possess characteristics distinctly

different than the other members of the supporting administrative organization.

Emergencies at depth require prompt, instinctive responses by all members of the diving team. Often

during an underwater welding accident, there is little or no time to refer to written procedures or

geographically distant experts. The consequence of incorrect decision making or even mere hesitation can

include senous matenal damage, injury to the welder-diver, or even the death of the welder-diver.

In general the dive team is made up of one or more welder-divers, one or more diving supervisors, the

standby diver, the diver tender, the life support technicians, and other supporting technicians. Details of

the duties assigned to each member of the team are provided in the ADC Consensus Standards.

The significance of individual preparation was stressed in the previous sections. It is important that each

team member has the necessary skills, knowledge, and motivation to perform his or her assignment, but

even with the best individual training available, there is still no guarantee that the team will be successful.

Certain team attributes are therefore recommended to promote safe underwater welding operations.

4.2.1 Process Auditing

Process auditing is defined as actions taking place to monitor processes and, when necessary, taking

actions to correct deviations which lie outside of the established norms. The objectives of process

auditing are to ensure that rules and regulations (designed to mitigate risk) are followed and to

identify potential sources of risk.

In other words, any organization attempting to maintain a high competency level must have a method in

place for objectively monitoring and improving its processes, a self evaluation. The degree of formality of
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such a program is dependent upon the size of the group, the complexity of the task at hand, and the

resources available to perform the process auditing function.

At the dive team level, process auditing involves a series of ongoing checks to spot expected as well as

unexpected safety problems. Process auditing steps should be included in pre-project preparations,

pre-dive preparations, and post project debriefings at a minimum. Recommended sources of

information used in process auditing include diving and treatment records, individual dive logs, safe

practices/operations manuals, Job Hazard Analyses (JHA), and comments from dive team members.

4.2.2 Culture

Ideally, the dive team possesses a well planned safety culture developed by the senior level

management of the diving contractor's organization. Often, however, the parent diving

organization's culture may not strongly influence an operating dive team which is deployed offshore.

In this case the dive team's culture is developed within the team itself and may often influenced by

the culture of the working environment around it, i. e. the offshore rig's culture.

Three characteristics which are normally found in the cultures of effective organizations include

focus on reliability, focus on teamwork, and effective crew resource management.

4.2.2.1 Focus on Reliability

By focusing on organizational reliability of the underwater welding team, overall personnel safety and

project quality can be improved. All team members should understand their importance in ensuring

the safety of the operations. The culture of the operating dive team should include the realization

that mistakes will occur, and such mistakes should not be punished in a misguided attempt to

promote safety. Rather upon recognizing mistakes, members of the dive team should work with the

person(s) making the error by first trying to identify the source of the error and then determining

corrective actions.

A key element in the dive team's focus on reliability is the concept of safety problem ownership by

each individual team member. It is critical that all involved recognize their duty to identify and

report potentially hazardous conditions to the level where corrective action can occur. Without

establishing a willingness to accept unavoidable mistakes mentioned above, individuals will be reluctant to

report the hazardous condition. The individual welder-diver will be more likely to hide the condition in an

attempt to protect himself or his teammate from reprimand.
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4.2.2.2 Focus On Teamwork

Ever\ effort should be made to emphasize the importance of teamwork in the success of the dive

team. Team members should possess mutual trust, compatibility, the willingness to work together,

and an appreciation for the value of cooperation.

Where underwater welding projects involve the use of specialized equipment or work in extreme or

potentially hazardous conditions, an important factor of safety is the degree of team work. In these

circumstances the known or recorded qualifications of team members are not in themselves a

guarantee of safety, and the divers should be trained together frequently until the required degree of

cohesion and mutual trust is developed.

If the underwater welding operation is to be carried out in pairs the diving supervisor may establish fixed

pairing for the work as it becomes clear which divers work best together. If a more general degree of team

unity is required, diving pairs may be switched around, but it becomes important to drop from the team any

individual who turns out to be incompatible with more than one or two of the other divers.

Dive team members should recognize an individual's inability to complete complicated underwater

welding tasks alone. Since efficiency in underwater work depends on making the most effective use

of the limited number of underwater man-hours per day, cooperation and synergy must be stressed

at every opportunity. Additionally, cooperation among team members in recognizing safety hazards

or near misses provides redundancy which protects against unsafe operations.

The same elements of team work which ensure success in welding operations under normal conditions

become even more crucial in emergency situations. A growing body of evidence suggests that, when

teams face sudden transitions from routine procedures to a medical emergency, coordinations can

break down and conflicts can occur Thus, by establishing team compatibility', cooperation, and trust

during daily welding operations, the operating team mitigates the risk of a diving casualty. There

are numerous references for developing a teamwork culture. A few basic principles which can be

readily applied to underwater welding teams are provided as follows:

• Emphasize team basics such as appropriate size, purpose, goals, skills, approach, and

accountability.

• Set clear rules of behavior for all team members.

• Establish urgency and direction to enhance what the expectations of the team are and promote

the team's purpose as worthwhile.

• Promote demanding performance challenges and challenge the group regularly with fresh facts

and information. High performance standards seem to spawn real teams.

• Use positive feedback and reward.
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• Emphasize team accountability not just individual accountability.

4.2.2.3 Effective Crew Resource Management (CRM)

CRM is a tool to develop an effective culture. CRM, a specific training methodology which has been used

extensively by the commercial airline industry, is based on two overarching principles, a focus on

admitting infallibility, and the realization of stress effects.

The goal ofCRM is to reduce the frequency and mitigate the consequences of human errors. This

goal is accomplished through a three stage process of (1) avoiding as many human errors as possible,

(2) containing the effects of unavoidable errors, and (3) attempting to mitigate the consequences of

accidents which result from errors.

CRM accomplishes these lofty goals through training. CRM requires strong organizational support

for concepts taught and recurrent training accompanied by continuing feedback and reinforcement

for the practice of effective teamwork.

4.2.3 Risk Perception

Risk perception involves two key elements: (1) Whether or not there is any knowledge that risks exist at

all, and (2) if there is knowledge that risk exists, the extent to which it is acknowledged appropriately and

minimized.

The second element, the appropriateness of acknowledgment is situation dependent and is greatly

influenced by the team's reliability focus. Proper training regarding the potential risks of underwater

welding and cures for such risks provides the answer to the first element, knowledge of the existence of

risk. A rough framework for such training is provided below.

4.2.3.1 Underwater Welding Risks

Since underwater welding involves the combination of two highly specialized skills, diving and

welding, the associated risks are typically complex. By considering underwater welding as a subtask

of diving and diving as a subtask of marine industrial operations a relatively simple taxonomy of

underwater accidents can be developed. One such breakdown of underwater welding accidents estimates

that approximately 75% of all underwater welding operations accidents which occur are basic industrial

safety accidents, injuries common to all industrial and construction environments (i. e. tripping, falling

objects, etc.) Furthermore, it is estimated that approximately 15% of the underwater welding accidents

involve diving casualties such as barotrauma, arterial gas embolism (AGE), and decompression sickness.

It is estimated that the remaining 10% of underwater welding accidents are the result of conditions unique

to underwater welding such as injuries caused by the welding electrode or the ignition of flammable gases

caused by the intense heat.
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4.2.3.2 General Industrial Risks

Recognition of the general risks associated with industrial work is a key element in ensuring the

safety of welder-divers. Often underwater welding safety concentrates on hazards below the

waterline: hazards above water must be considered as well. All operating team members must be

aware of the risks of performing topside work, particularly when tasks place the welder-diver at risk.

For example, care must be taken to avoid actions which may result in falling objects in the area in

which the welder-diver is working, entering, or leaving the water.

Though beyond the scope of this specification, numerous references are available which provide guidance

for protecting against general industrial accidents.

4.2.3.3 Diving Risk

The ADC Consensus Standards for Commercial Diving Operations provides guidance regarding

general diving risks. Underwater welding teams must be aware of all pertinent hazards which may

lead to death or injury from traditional diving disorders, i. e. arterial gas embolism, decompression

sickness, barotrauma.. All team members must be trained to recognize and communicate those

hazards which are sufficiently risky to cause immediate termination of diving. In accordance with

ADC Standards, a system must be in place to communicate the emergency termination of diving.

4.2.3.4 Risks Of Welding In An Aqueous Environment

Specific recommended safety guidelines are provided in Annex D of these specifications.

There are several acknowledged risks common to all underwater welding procedures and other risks

which are unique to specific procedures. Complete perception of applicable underwater welding

risks should only be evaluated based on the specific welding procedure in use.

The general safety risks involved in underwater welding are electric shock, fire or explosion,

asphyxiation, and toxic or narcotic effects resulting from presence of certain welding byproducts.

Though the use of low level, DC current welding mitigates the risk of death by electrocution, the high

electrical conductivity of water does provide the potential for a significant electric shock from an arc

welding rig.

Due to the increased pressures at depths at which underwater welding is performed, there is an

increase in the flammability of materials and explosiveness of gases.

In the case of wet welding, there is a risk of the arc creating chemical reaction in water breaking the

water down into an explosive combination of hydrogen and oxygen. During repair or salvage of

vessels with voids which may contain contaminated material, there is a heightened risk of explosion.
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The intense glare of a welding arc could cause damage to sight as a result of welding operations

4.2.3.5 Job Hazard Analysis (JHA)

One useful tool in identifying and prioritizing risks is the Job Hazard Analysis. A job hazard

analysis must be performed in accordance with the ADC Consensus Standards.

4.2.4 Emergency Preparedness

Operating teams must be prepared for all emergencies. Contingency plans for each likely emergency

should be prepared in advance. Emergency response training and practice drills closely simulating

actual emergencies should be conducted frequently.

4.2.5 Command and Control

4.2.5.1 Structure

In order to achieve success, an underwater welding operating team must maintain an effective

command and control structure. Though the specific organizational structure and control

mechanisms may vary between organizations, it is recommended that the command and control

features include an adaptive organizational structure, decision making authority which has been

delegated to the lowest possible level, mechanisms by which emergency problem solving and decision-

making management can be practiced, and techniques by which fault diagnosis can be taught in

complex systems.

The importance of an adaptive organizational structure can not be overemphasized. A team's structure

defines the extent to which the team has a clear chain of command or authority gradient. An adaptive

organizational structure is particularly important in underwater welding because of the potential for

reliability oriented safety processes to compete with production oriented processes. Specifically, the

mission of safely deploying the underwater welder often conflicts with the costly mission of performing the

underwater weld.

It is easy to imagine many possible scenarios where the two competing missions could become mutually

exclusive. For example, an attempt by an inflexible command structure to prevent a failed evolution

during a critical operation could result in an injured welder-diver. In this example the mission of

completing an operation on time conflicts with the mission of completing a safe mission. The organization

must be flexible enough to maintain production while still knowing when to end the operation due to a risk

to the welder-diver.

An adaptive organizational structure also ensures critical redundancy within the organization. A simple

example of an adaptive underwater welding organizational structure would be a team which contains two
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qualified diving supervisors, with both available topside. In the case of a welder-diver emergency, the

acting diving supervisor could manage the solution of the welder-diver emergency, but transfer control of

the remainder of the operation to the second qualified diving supervisor. If the organization had not been

able to adapt in this way all of the welder-divers would be at a greater risk due single diving supervisors

required focus on the troubled diver-welder.

The operating team's command and control should be structured to maintain decision making

authority' at the lowest possible level. This is often termed "Command by Negation." In other words,

more senior level managers monitor the performance of subordinates. Subordinates are allowed to

make decisions and act unless the more senior managers say "no" to specific decisions. Not only

should the operating team itself be given organizational autonomy, but the welder-divers themselves

should be allowed to make decisions at their level in cases where their vantage point affords them the

best understanding of the situation. Put simply underwater welding operational safety decisions should

not be made at corporate headquarters and the choice of underwater tools should not be made topside.

4.2.5.2 Robustness

Back up systems should exist involving people, procedures, and hardware.

4.2.5.3 Use of Drills

In any system of command and control, emergency problem solving and decision-making

management need to be practiced in advance. This can be done through simulator training or by on

site training simulations. Drills should be imposed on operating teams. Team members at all levels

should be encouraged to develop contingency plans for all possible emergencies and to practice

solving welding and diving problems.

Similarly, efforts should be made to completely understand all components of the welding and diving

systems and sub systems. Symptoms of systems malfunctions should be studied and troubleshooting

techniques should be practiced.

4.2.6 Training

Operating team members should not only train individually but also together as a group to promote

team integrity. Team integrity, the extent to which crew members continue to work together over time or

continue to belong to the same unit is necessary to maintain the capability of the operating team.

4.2.6.1 Frequency of Training

Team training should be conducted when a new team is formed, after prolonged non-operational

periods, and periodically, as necessary to maintain team operational proficiency.
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4.2.6.2 Team training principles

The following team training principles should be applied to welding team training:

• Participant feedback should be encouraged throughout all parts of the training process.

• After all simulations, near misses, or actual emergencies, a follow-up analysis of the team's

performance should be conducted. Normally this should occur in the form of an informal

debrief. Similarly, briefings should be conducted prior to simulated drills, and contingency

briefings should be conducted prior to the commencement of operations.

• Training focus should be on accident root causes rather than technical proficiency.

• Training should place an emphasis on repetition and task variety.

• Team members should be trained to cross check one another's performance of critical tasks and

non critical tasks when time permits.

• All training should include "repeat backs."

• Training simulations and exercises should contain sufficient flexibility to allow people some

creativity in problem solving.

4.2.7 Communications

Effective communications must be maintained during operations. Communications between welder-

divers and the surface results in increased flexibility of operation, economy of diving effort, and much

greater safety Communication between topside personnel is also critical to the success of the dive team.

The two key methods of communication within the operating team are the dive team briefing and

voice communications between topside and the welder-divers.

4.2.7.1 Dive Team Briefing

Dive team members shall be briefed on

• Welding tasks to be undertaken.

• Safety procedures for the diving mode and the welding mode.

• Hazards and environmental conditions resulting from welding operations which may affect the

safety of the operations.

• Modifications to the operating procedures necessitated by the specific welding operations.

Pre-dive and pre-project discussions should also include promulgation of the project plan,

designation of individual responsibilities, and the review of contingency plans in case of emergency
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4.2.7.2 Two-Way Voice Communications During Welding Operations

Three key problems of underwater voice are (1) poor auditory quality of the signal, (2) lack of face-to-face

communications, eliminating important non verbal cues, and (3) the stressful environment of the welder-

diver. While this combination leads to degraded communications, it can be methodically improved

through the use of restricted standardized vocabulary and redundancy through repeat backs.

When the diver is at the underwater work site, the responsibility for protection against electrical

shocks is shared by the diver and the tender. Heightened awareness by the tender is crucial to the

safety of the operations. Standardized terminology (e. g. "Make it hot", "make it cold") between all

tenders and welder-divers should be determined and utilized. The use of "repeat backs," repeating

the sender's signal to verify the comprehension of the receiver, is recommended. Furthermore, the

tender must be careful to communicate a response only after the required action has been taken. For

example, the tender should first open the knife switch and then indicate to the welder-diver that the

knife switch is open.

4.2.8 Team Requisite Variety

Effective teams should maintain optimum requisite variety. In other words the team should contain

a group of members with all the individual knowledge and experience required to assist in making

decisions and effecting action Required members of the operating team are discussed below.

4.2.8.1 Welder-Diver Support

An adequate number of personnel shall be provided topside to support the welder diver with

optimum safety and efficiency. While this number shall vary depending on the particular welding

operation, it shall be at least two.

One person (the tender) must maintain communications with the welder-diver, transmit his

instruction to others, and operate the welding or cutting current knife switch.

A second person shall control the amperage and respond to the instructions of the tender. In some

instances he may need to be dedicated to tending the diver umbilical and maintaining proper tension

or slack.

4.2.8.2 Life Support Technician

Each dive team should have a fully qualified diver with extra specialty training enabling him to

handle front-line diver emergencies and stabilize them. Such duties should not detract from his

diving duties. During underwater welding operations the life support technician, in addition to
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fulfilling the requirements of the ADC Consensus Standards, should be aware of the potential

medical emergencies associated with underwater welding.

The Life Support Technician should be keenly aware of the hazardous effects of welding gases on the

welder-divers atmosphere. Senior Diving Supervisor

A Senior Diving Supervisor is responsible for a number of Diving Supervisors or for a major diving

operations where diving is being carried out on a shift basis and where it is necessary to have more

than one Diving Supervisor.

While it is not the role of the senior diving supervisor to override the actions of another diving

supervisor in charge of a specific dive, he should advise the acting supervisor in the interests of safety

and efficiency. He should also act as the liaison between the dive team and the customer.

4.2.8.4 Diving Supervisor

The diving supervisor for underwater welding operations is responsible for the safety and health of the

underwater welding team. He is required to carry out his responsibilities in accordance with the ADC

Consensus Standards for Commercial Diving Operations.

In addition to the general requirements outlined for diving operations in the ADC Standard the

Diving Supervisor for underwater welding operations must modify procedures to ensure safe welding

operations. Specifically the Diving Supervisor should:

• provide necessary modifications to the Safe Practices/Operations Manual

• provide necessary modifications to the pre and post dive check lists to include underwater

welding operations

• perform a Job Hazard Analysis for underwater welding

• ensure the appropriate and sufficient breathing mixtures, supplies, and proper equipment for

underwater welding

• ensure that the detailed briefing of the dive team and support personnel includes unusual

hazards associated with underwater welding.

4.2.8.5 Welder/Diver

In addition to the general requirements outlined for diving operations in the ADC standard the

Welder/Diver for underwater welding operations must be qualified in accordance with this specification

and follow safe underwater welding practices at all times during the underwater welding operations

whether on deck or underwater.
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4.2.9 Incentives

Team incentives should be implemented to supplement individual welder-diver incentives. Providing

team incentives is often the best way to promote team work the organization. Peer pressure often proves to

be more effective at motivating those team members who do not carry their load than does pressure by

superiors. For example operating teams should in some cases receive grades or bonuses based on the entire

groups accomplishment of group goals, not on the accomplishment of individual goals.

4.2.10 Shiftwork and Rest

A duty schedule, with special attention to the cycle time, is essential to good crew performance.

Sleep schedules should be mandated and enforced, especially for operators who perform low-level

vigilance monitoring tasks or complex cognitive tasks
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4.3 Corporate Administrative Organization

There is a myriad of possible corporate organizational designs under which the underwater welding

function can be performed. There is no perfect organization for every situation, however, there are

key corporate organizational features which are of importance to the safety of underwater welding

operations.

4.3.1 Organizational Structure

4.3.1.1 High Reliability Organization

The organizational structure of an underwater welding organization should be designed to ensure

high safety reliability. Typically, companies are organized by product (project), by function, or by some

combination in between. No matter how the parent organization is structured, everyone employed in the

component responsible for the underwater welding function is a participant in a high reliability

organization (HRO). HRO's are characterized by both advanced technology (requiring specialist

understanding) and high degrees of interdependence (requiring generalist understanding) Adaptive

Organizational Structure

Organizational complexity must be carefully considered in an HRO, such as the underwater welding

function of the corporate structure. Steps should be taken to diminish negative consequences of

complexity when it is perceived that the organization is becoming dysfunctional.

More specifically a hierarchy should be developed in case of a mishap. People should be given specific

roles in such situations. In order to ensure optimal emergency preparedness, the corporate

organization should assume a crisis is going to happen and address the role of the organization in

damage control This emergency hierarchy may not be consistent with the routine hierarchy in place

in the corporation.

4.3.2 Command and Control

4.3.2.1 Levels Of Authority

Levels of authority- should be defined for normal and emergency operations. Particularly in the

event of an emergency, there should be no question of who is in charge of resolving the emergency.

While a definite hierarchy should exist, it should not be bureaucratic.
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4.3.2.2 Accurate decision making

Key decision makers in organizations should see the "big picture." Information about risks should

flow to those decision makers who can put together warning signals from various areas of the

organization, thus forming a picture of a risky or hazardous situation in its early stages of

development.

4.3.2.3 Flexibility within formal rules

Flexible decision making is essential in organizations that have potential to create catastrophic

consequences but manage to avoid them. Flexible decision making must span the organization. It

should be monitored from the top. Critical decisions are not only pushed down to the lower levels of

the organization, but they are made by the individuals most qualified to make them. Low-level

managers must draw on the experience of their higher level colleagues.

Formalized rules are often a source of risk mitigation, although such rules must be followed and

enforced in order to be effective.

4.3.2.4 Communication

Lines of communication between corporate level and field level operating personnel must be clearly

defined and utilized. Corporate level managers must seek feedback from field personnel and trust

field expertise in operations.

4.3.2.5 Appropriate Checks and Balances

Organizations in which errors can propagate into catastrophes require checks and balances across activities.

Redundancy in personnel is required so that appropriateness of activities is constantly monitored.

Organizations are more susceptible to risk when they rely on outsiders to set operating or safety standards;

therefore organizations should be "self- policing."

4.3.2.6 Level of Interdependence

It is the role of corporate management to manage the level of interdependence among organizational

units. Corporate level managers must take responsibility to coordinate resources across all field

units and resolve any conflicts.
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4.3.3 Organizational Culture

Organizational culture is the set of important assumptions that members of an organization share in

common. Every organization has a culture. It is similar to an individual's personality - an intangible

yet ever-present theme that provides meaning, direction, and the basis for action.

The internal culture is tutored from the highest level of management. The head of organization

should perceive himself to be constantly in a training mode in terms of developing a culture

4.3.3.1 Emphasis On Safety And Reliability.

Every person is responsible for every safety problem he or she discovers, at least until he or she can

find the individual with skills appropriate to the problem's solution.

The corporate culture is internal, but it often has external consequences. An HRO's culture should include

specific characteristics to promote safety in all operations. Failure to develop a strong safety culture in a

commercial diving organization could lead to the consequence of severe injury or death to the welder-

diver. The practice of safety is not simply a set of protocols using the latest in technology or in the art of

human relations. It is a state of mind, of individuals having their hands on the hardware, and of corporate

executives isolated on the top floors.

The development of a safety culture begins at the top of an organization and filters down to the front line

operations. There is no prescriptive formula on how to develop and maintain a safety culture. Support

of Training Goals

Training should not only be done for its own sake but also for the purpose of creating climates of

reliability and enhancement. The corporate culture should include support for operations safety

training. Classroom training, drills, and exercises must be supported from the top levels of

management. Resources should be allocated to ensure the adequacy of training. Safety training

programs should be developed which meet the needs of field personnel and are consistent with

operational risks

4.3.3.3 Linking of Accountability with Control Systems

Organizational culture must support the linking of authority and accountability systems with

appropriately placed reward and control systems. For example if an underwater welding company has a

true safety culture, then employees should be accountable for safety violations, supervisors should have the

authority to enforce safety rules, and incentives should be denied to personnel for violating or not

enforcing these safety rules.
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4.3.4 Process Auditing

Process auditing refers to regular inspection of operations or processes within the organization. It is

intended to ensure that rules and regulations designed to mitigate risk are followed and to identify

potential sources or risk. In order for process auditing to be truly effective an organization must not

perform it m a way that yields few results or simply ignores the audit committee's reports.

Corporate management must determine appropriate auditing techniques necessary to control the

safety of underwater welding operations. The following sources may be useful in providing data for

audits:

Management rules and regulations

Work schedules

Operating Procedures (OP's)

Emergency Procedures (EP's)

Diver's Personal Log Book - The use of a welder-diver's personal log book is recommended. Such a log

book should be comprehensive as maintained by the welder-diver and periodically audited by the

employer.

Diving Company Log Book - The diving company must maintain a detailed diving log covering all

aspects of every diving operation that it has conducted.

Chamber Log Book - The diving company should maintain a detailed chamber log covering all aspects of

recompression chamber operations that it has conducted.

4.3.5 Appropriate Risk Perception

Managers should understand and contemplate the inherent risks of operations. Underwater welding

organizations are capable of contributing great harm to welder-divers and platform inhabitants, yet

their managers are often unwilling or unable to recognize this possibility. As ever more complex

systems handle ever more complex tasks, we inevitably build more systems that can fail. Maintenance

of corporate memory

Corporate managers must recognize similarities, implement lessons learned, and encouraged synergy

across projects. Systems should be implemented to compile lessons learned and retain them over time.
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4.3.7 Incentives

4.3.7.1 Contract Types

Contracts should not be implemented which provide excessive incentives to violate safe diving and

underwater welding procedures. For example, contracts should be written which limit the percentage of

the operating team which may be allowed to make repetitive dives, not which encourage too many to make

repetitive dives, thus leaving no one available to man the chamber in the case of an emergency.

4.3.7.2 Employee Reward and Control Systems

Avoiding risk and enhancing reliability requires appropriately designed reward and control systems.

Conflicting goals and poor alignments between rewards and desired outcomes should be recognized and

eliminated.
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4.4 Interfaces

There are many areas of man-machine or organization-system interfaces in the underwater welding system.

The relationships between the individual or organization and the system influences are represented in

Appendix G.

4.4.1 Operating Procedure/ Welder-Diver Interface

Operating procedures should be developed and implemented with the limitations of individual

welder-divers in mind. General knowledge of the capabilities of typical welder-divers should be

combined with judgment about specific welder-divers. In other words, the design of a procedure

should consider the capabilities and constraints of the average or representative welder-diver, and

the assignment of a specific individual to perform a procedure should include a consideration of that

specific individual's capabilities relative to average welder-diver for which the procedure was

designed.

Perhaps the most useful tool for tracking an individual welder-diver's capabilities is the diver's personal

log book. The ADC Consensus Standards requires that the log book details all dives. Many in the industry

believe that such a document should be comprehensive. It is recommended that in the case of underwater

welding that such detail include specific details of welding procedures which were performed. Such

documentation allows the log book to later be used as a tool for assignment of individual welder-divers

4.4.1.1 Task Considerations

On-line emergency procedures which are developed should be brief and succinct so that persons carrying

out the emergency procedures understand them clearly and do not waste time interpreting the action(s) to

be taken.

Procedures should be phrased as actions to be taken, not as prohibited actions or system state descriptions

At the procedural level there is no need to include theory or explanation which may confuse the operator

Also processing what should not be done uses up valuable time in which the necessary action could be

taken.

4.4.1.2 Function Allocation

Function allocation refers to the conscious design decisions which determine the extent to which a given

job, task, function , or responsibility is to be automated or assigned to human performance. Such decisions

should be based upon aspects of task loading and precision requirements.
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Automating some tasks can obviously be effectively used to reduce the number of tasks performed by a

welder-diver, but automation should not be considered the best action in all circumstances. Precision

requirements must be analyzed. Often those tasks which require a large amount of task feedback aren't

well suited for automation. On the contrary, tasks which do not require task feedback and have a low error

tolerance are well suited.

4.4.1.3 Stress Loading

Due to the numerous stressful environmental conditions which are inherent in underwater work, procedures

should be designed to minimize the stress imposed on the underwater welder. Such stresses can

categorized as two general types, speed stress and load stress.

Speed stress is a function of the rate at which signals from the environment (1. e. voice communications,

visual observations of the welding arc, line pull signals ) impinge upon the welder-diver's senses.

Procedures must be developed in an effort to ensure that the welder-diver is provided with adequate time to

perform tasks and assure that safety shall not be compromised for the sake of speed.

Load stress is related to the number of independent streams of signals or information sources which the

diver/welder is required to monitor. To minimize load stress on the welder-diver, it is recommended that

an emphasis be placed on the performance of tasks topside or by other supporting divers.

Since work under pressure places a tremendous strain on the welder-diver and fatigue increases stress on

the diver, procedures should be designed which limit the amount of time an individual welder-diver is

deployed.

Put simply, maximizing work performed topside, schedulmg adequate time to complete underwater tasks,

minimizing welder-diver deployment rime, and providing sufficient diver support are the best defenses

against welder-diver stress overload.

Interestingly, a lack of sufficient stress can also have a negative effect, manifesting itself as stress

underload. Research demonstrates that not having enough stimulation can dull a worker's perception of

stimulus. Once the welder-diver is in position, welding the tender is often subject to this phenomenon.

Diver tenders often experience stress underload in the form of failure in vigilance performance. For

example, in monotonous and boring surroundings, the ability to detect infrequent, irregular, and often

indistinct signals is often diminished.

4.4.2 Procedure/Operating Team Interface

The design and implementation of operational procedures must include consideration of numerous

organizational factors of the underwater welding team. It is important that the operating team be allowed

to provide input to planners of the construction process. It is equally important for the operating team

members to be allowed to provide feedback to all procedures which affect the safety of operations.
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4.4.2.1 Effective Development of Procedures

Three major areas have to be dealt with in the development of procedures: (1) technical content, (2)

presentation, and (3) the potential errors and then; consequences. Procedures should be correct, accurate,

complete, well organized, well documented, and not especially complex. (Bea, 1997)

Exercises should be implemented to test the coherence and adequacy of the specified actions.

Particularly where actions cannot be reversed once performed, specific means should be proved to confirm

that the chosen procedure is the correct one for the particular situation at that time.

The presentation should be adapted to the level of education or training required and to that which is

consistent with the operators educational background.

Procedures should show different actions which are taking place in parallel.

4.4.2.2 Construction Planning Procedures

The diving supervisor should be included in formulating construction plans and procedures. In most cases

he should be included in the planning process well before the arrival of the operational team on the

underwater construction site. In many cases the diving supervisor is management's only expert m the

capabilities of welder-divers and m recognizing conditions which are hazards to underwater welding

operations.

4.4.2.2.1 Explosive and Hazardous Materials

During welding operations in areas potentially containing explosive or hazardous materials as built

drawings should be studied to identify all areas in close proximity to the work area which could contain or

might entrap explosive gases. Cargo manifests should be reviewed to identify explosive material and the

location of such material. Procedures to vent areas containing such hazardous materials should be

designed.

If wet welding is to be performed in a confined space or under structural members of shapes that would

hold rising gas bubbles, vent holes should be made to preclude gas entrapment, particularly, at depths

below 66 fsw.

4.4.2.2.2 Dry Hyperbaric Welding

Dry hyperbaric safety precautions shall include all of those required for welding in wet, constrictive space

above water. "Blow-down" procedures for removing water from habitats must be determined prior to

commencing operations.

4.4.2.2.3 Hot Tap Procedures
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The operating team must be included in determination of procedures which are to be used for hot tapping

of any existing pipelines.

4.4.2.3 Operating team feedback

Procedures which are most affected by their interface with the operating team include not only welding and

diving procedures but also inspection and lock-out/tagout procedures. The welding operating team should

be involved in providing feedback to the development and maintenance of these procedures.

4.4.3 Operational Procedure/Corporate Administration Interface

Corporate level management ultimately has the responsibility of ensuring that operational procedures are

updated to reflect the most current information available.

In addition to having the responsibility for quality assurance of operational procedures, the corporate

organization is also responsible for maintaining numerous administrative procedures important to welding

and diving. These procedures include but are not limited to the following:

medical staff procedures

accident reporting procedures

contractor/subcontractor selection procedures

systems inspection maintenance and repair procedures

internal audits and management review procedures

4.4.3.1 Emergency Response And Control

Corporate office personnel must take responsibility to proactively maintain up-to-date instructions and

procedures for safe operations of underwater welding teams in the field. Contingency procedures and

emergency response procedures should also be maintained for those most likely emergency situations.

Accident reporting procedures should be enforced from the corporate level. The value of accident

reporting is in providing lessons learned and in establishing databases for better management of resources

to prevent serious accidents. Accident reporting procedures should emphasize the use of accident reporting

as a safety performance improvement tool not as career ending device.

4.4.4 Delivery Structures/Welder-Diver

For the purposes of this specification, delivery structures are defined as those items used for delivery of

welder divers to the work area and structures which physically support the welder-diver during operations.
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This includes stages, habitats, and rigging. Parameters of concern for these structures include structural

design and, in the case of habitats, ventilation and background gas constitution.

4.4.4.1 Load Design

External forces exerted on the weld habitat by wave loading must be considered in the design of the

habitat.

The weld habitat is designed and custom-built to accommodate braces and other structural members whose

centerlines may intersect at or near the area that is to be welded.

Size and configuration of the habitat is determined by dimensions and geometry of the area that must be

encompassed and the number of welders that will be working in the habitat at the same time.

4.4.4.2 Rigging Systems

The numerous methods of rigging prohibit providing specific directives for rigging. All rigging

components should be properly weight tested, inspected, and maintained. Rigging systems which are

required to maintain the safety of the welder-diver should include adequate redundancy. All lock out tag

out rigging should be monitored regularly to ensure proper maintenance.

4.4.4.3 Welding Habitat Ergonomic Considerations

Care must be taken to ensure welder-diver comfort and that utility is designed into a habitat prior to

fabncation. This can be done through the field of Ergonomics. Ergonomics should be applied in the early

phases of the design, that is in the concept, planning, and mitial design steps of [habitat systems]. In other

words, ergonomics needs to be proactive instead of reactive

Applicable data from ergonomic handbooks should be utilized when possible in the design of welding

habitats. This data includes:

• anthropometric data such as human body dimensions, reach capabilities, and muscular strength

• human sensing capabilities such as sight, hearing, touch, etc.

• human motor activities

• human reactions to the physical environment such as heat, humidity, vibration, noise, and pressure.

Due the numerous variations of structural configurations being prepared, hyperbaric welding habitats are

often unique in design. It is typical for specific habitats to be designed and built from scratch to meet a

specific need. Consequently, the re-use of such habitats may be limited so the improvement of that specific

habitat is not likely. Likewise, it is difficult to improve ergonomics of a given habitat prior to performing a
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repair project because the already high cost of constructing a unique habitat prohibits the construction and

testing of a prototype. Also, the urgency of repairs places time constraints on completion.

Welding habitats meet the established definition of confined spaces. (1) They are large enough and so

configured that an employee can bodily enter and perform assigned work. (2) They have limited or

restricted means for entry or exit. (3) They are not designed for continuous human occupancy and have a

known potential to contain a hazardous atmosphere. Welding habitats should therefore be designed to

incorporate principles of confined space entry.

In addition to design consideration for surface confined spaces, designers and fabricators should consider

the pressure effects imposed on welding habitat systems. For example, the use of Argon in welding gas is

known to multiply the narcotic effect on a welder-diver at depth. Argon has narcotic effect of

approximately twice that of nitrogen.

A welder-diver may often be required to dive into a maze of complex instruments, projecting arms, piping.

lines, and hoses and perform multiple tasks. Prior to navigating such structures, welder-divers should

familiarize themselves with the layout of the structure using drawings on the surface.

4.4.4.3.1 Dry Hyperbaric Welding

when air is used as the background gas, the weld chamber can be continuously or intermittently vented to

avoid accumulation of fumes and smoke. The high cost of mixed gas precludes venting, so smoke and

fume scrubbers must be used in the chamber. If high PPO
:
of the background gas exists the welder's

exhaust gas must be discharged outside the chamber by means of an overboard dump system.

In many circumstances breathing gas composition must be monitored for levels of
: , N :

and He. A

welding gas absorber may be required to remove the welding gas and to dissipate heat. There are many

impurities which tend to accumulate in the breathing gas including C0
2 , CO, methane, dust,

etc...(Lubitzschetal, 1986)

According to ADC, each diving contractor should have an appointed safety director designated in writing

by an officer of the company whose specific tasks include dictating the background gas mixture to be used

in dry hyperbaric welding and determining the need for equipping the dry hyperbaric chamber with a high-

pressure water spray system. Ergonomics of the habitat also include consideration of the size, geometry,

and layout of the welder-diver's workplace.

4.4.5 Delivery Structures/Operating Team Interface

The operating team is responsible for the safe installation and operations of the all welder diver delivery

structures including welding habitats.
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4.4.6 Delivery Structures/Corporate Administration Interface

The corporate administration is responsible for assuring proper design, inspection and repair of all delivery

structures.

4.4.7 Equipment/Welder-Diver Interface

Ergonomics of diver/welder equipment should be considered in order to minimize the demands placed on

the welder-diver. Design of the hardware and software with which the welder-diver is given to work must

be consistent with the behavioral and physical capabilities and limitations of that employee as an operator.

General ergonomic design solutions which should be applied to underwater welding equipment include the

following:

• Use of familiar elements and elimination non-essential elements.

• Display of information that is directly necessary.

• Highlighting of important information.

• Integration of displays.

• Work up training on new equipment

4.4.7.1 Awareness of System Causes Of Accidents

Operators must be aware of subsystems serving multiple and incompatible functions. When systems are

supposed to act independently of one another but are in close proximity there is the greater possibility they

will interact, leading to disaster. Tightly coupled systems are prone to accidents. Such systems involve

more time dependent processes, invariant sequences, little slack, and overall designs that allow only one

way to reach a goal. Color coding is often a useful tool in preventing erroneous subsystem interactions.

4.4.7.2 Redundancy

Redundancy in equipment is required so that appropriateness of activities is constantly monitored.

4.4.7.2.1 Thermal Protection

Care should be taken to maintain the proper temperature or the welder-diver through the use of passive or

active insulation. Passive insulation (i. e. wet or dry suits) protects the welder-diver from the cold through

a layer of insulation. Active insulation uses an outside heat source, hot water or an electrically heated

garment, to warm the diver-welder. When using hot water suits care should be taken not to scald the

welder-diver. Often this can be accomplished by adjusting the water temperature at the beginning of the

dive only.
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A significant major thermal encountered by working welder-divers is that of progressive hypothermia. It

starts with the limbs and body regions most poorly perfused or distant from the core. The principle

avenues of heat loss for immersed divers are convection, which is relatively constant in magnitude for all

depths, and respiration heat loss, which increases with depth of the diver and becomes the major avenue of

heat loss for depths greater than 600 feet (Kuehn and Acklesn 1978).

Mental function becomes quickly impaired with hypothermia. When this occurs, the individual may

become semiconscious, confused, disorientated, introverted, and upon recovery have amnesia. In

potentially hypothermic conditions, coldness of the skin to the point of pain, and intense uncontrollable

shivering are indicators of rapid heat loss. If either sign is not apparent to monitors due to diver

unawareness or unwillingness to inform, then confusion and irrationality in the diver's verbal

communication may review his condition. It is important to realize that most divers expect to be cold and

may have a tendency not to complain about it. They should be encouraged to complain

A diver's evaluation of their thermal balance may vary greatly. When heat loss takes place over a

prolonged period or time, the diver is more likely to misjudge his/her thermal state than one who cool

rapidly A small loss in core temperature may result in loss in mental capacity, memory, muscle strength,

and dexterity. These effects can be furthered magnified by nitrogen narcosis.

4.4.8 Equipment/Operating Team Interface

The proper mteraction between the operating team and the equipment is crucial to safety of underwater

welding systems. The operating team's interface with the equipment manifest itself in all phases of the

system's life cycle. Though this document is primarily concerned with system operations, it is

recommended that the operating team play a crucial role in equipment design, and the inspection,

maintenance and repair (IMR) for underwater welding systems.

4.4.8.1 The Operation of Systems

As earlier described, operators must be aware of the systems causes of accidents. Each equipment operator

within the team should understand the role of the specific piece of equipment within the system m order to

recognize potential system failures which could result. It is important for equipment operators to recognize

equipment malfunctions immediately and provide sufficient feedback to allow the diving supervisor to take

corrective action.

4.4.8.2 Operations Feedback To Design

Members of the underwater operations team also have a duty to provide feedback for equipment design

improvements to equipment designers. It is recommended that each operating team provide a process for

such feedback.
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4.4.8.3 Inspection, Maintenance, and Repair (IMR)

While it is recognized that in many organizations operating teams do not perform maintenance and repair

of their equipment, operating teams also have a duty to provide feedback inspection maintenance and

repair of underwater welding equipment to appropriate maintenance personnel. It is recommended that

each operating team provide a process for such feedback.

4.4.9 Equipment/ Corporate Administration Interface

The corporate organization has responsibilities to ensure that operators have access to the equipment they

need to properly perform the tasks assigned. Meeting this responsibility requires design of special tools for

special jobs, research and development of new tools and techniques, and appropriate allocation of

resources including tools and job aids. Job aids (e. g. operational or maintenance manuals and hazard

warnings) should be prepared to enhance their use by a welder-diver to assist in performing the required

job.
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5. Analysis and Evaluation of HOF Applications

Once the HOF applications were developed, an attempt was made to determine the usefulness of each one

by applying each to the analytical model. In order to provide a baseline for comparison, the probability of

system failure was determined assuming no HOF applications have been applied to the system. (See

Appendix I.) This baseline was based on the fragility analyses described in the analytical model section.

No provisions for detection or correction were included. The welding safety subtasks were selected based

on information from the literature, expert interviews, and the author's personal experience. The results

indicated an extrinsic probability of system failure in the welding component as 3.48%. It is important to

note that while this is high system failure rate, it is based the application of no HOF measures, no

mechanical correction or detection measures, and it is primarily calculated as a relative risk used for

comparison with systems with the HOF applications applied.

The mechanism for system improvement of each application has been classified as either error mitigation,

detection, correction, or fragility improvement. (See Appendix J.) Each of the HOF applications were

placed in the model based on these classifications. If an HOF application improves the probability of

detection of a human or organizational error, a determination of the new probability of detection given that

application was applied to the model. For example, if implementation of training program to teach welder-

divers to properly perceive the risk of explosions in welding habitats could double the probability of the

detection of explosion risks, the P(D) would double in the explosive safety subtask.

Just as an HOF application can improve the probability of detection, it can also improve the probability of

correction. An improvement in the probability of correction increases the probability that the system will

not fail due to a human error because it will be corrected prior to the occurrence of system failure. For

example, conducting drills can greatly increase the probability that a welder-diver would correct an unsafe

condition.

The probability of system failure can also be decreased using an improvement in the system's fragility,

thus increasing the system's human error tolerance. For example, medical examination of welder-divers

can screen out candidates who are prone to heart failure or respiratory illnesses.

Perhaps one of the most difficult yet important judgements that must be made in employing this model is

determining the correlation between probabilities of human errors. By default the model assumes that the

occurrence ofHOE is statistically independent, and therefore uncorrelated (p=l). Some organizational

factors can increase the correlation between human and organizational errors in subtasks. For example a

strong organizational safety culture has a tendency to correlate the risks of human error between subtasks.

In these cases, the probabilities of human error should be assumed to be perfectly correlated, (p=0).

All HOF applications were considered for testing. Several such as diet were considered to have an

insignificant effect on human organizational error and were therefore not tested. Some HOF applications,
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such as selection based on education, were considered to be to difficult to estimate their effects and as a

result were not tested. Additionally, the direct effects of corporate administrative recommendations were

determined too difficult to quantify and were therefore not tested.

Twenty-nine of the recommended HOF applications were tested using the process. The results were

ranked based on ascending probabilities of system failure given the HOF applications. These results are

provided in Appendix K. Two example model calculation spreadsheets are provided m Appendix L. The

choice of these two HOF applications was based on concerns expressed by two underwater welding

industry experts.

One expert suggested that most accidents he has seen in over twenty years of underwater welding

operations could have been prevented if superintendents did not mtimidate welder-divers and prevent them

from expressing confusion or fear about an operation. Training welder-divers to recognize there limits and

to communicate their concerns to the diving supervisor is one way to respond to this problem.

Implementation of such a training program was tested using the model. It was assumed that such a training

program would reduce the probability of human error in all subtasks by fifty percent. It is also true that

instilling an attitude that it is okay for an operator to know his limits and to speak up about any such

concerns would correlate the probabilities of human error. Perfect correlation was assumed. Based on

these assumptions the probability of the welding system failure in safety was determined to be 1.12%. This

represents a 68% decrease in the probability of system failure.

Another industry expert suggested that welder-divers cannot be electrocuted from the underwater wet

welding. In an attempt to verify this, standard detection and correction measures for DC welding

equipment electrical safety were tested using the model. It was assumed that there was no correlation

between the probabilities of human error. As shown in Figure 8 there is a .012 probability that the welder-

diver will commit an error.

It was assumed that there is a 90% probability that the buddy diver would observe that the welder is

between being shocked. Once the error is detected by the buddy diver or welder, proper corrective action

may or may not be taken.

If the buddy diver does notice and takes proper action, he will tell topside to de-energize the weldmg

generator by merely saying "power off." Topside personnel should respond by immediately backing away

from the power switch if it is open or opening the knife switch if the system had been energized. Again the

action of the topside switch operator is a function of his training and experience, stress, and alertness. It

was assumed that there is a 75% probability that the topside personnel will correct the situation within the

three seconds recognized as the amount of time needed to stop the heart. Using the model the probability

of death through electrical shock was determined to be .12%. This is a significant improvement, but it still

represents a risk of electrocution to the welder-diver. As shown in Figure 8, underwater welding circuits

are required to have an installed ground fault indicator which acts to provides a redundant system for
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opening the circuit. It is important to note that this device was not included in the calculations, but it is

shown in Figure 8.

Electrocution Injury

during welding

P(injury) = 0012

T
Yes

Topside

Corrects by

Opening

Circuit
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No

Sufficient Duration

for Injury
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Figure 8 - Fault Tree for Diver Electrocution
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6. Conclusions

1. No comprehensive database exists which includes accurate accident data for underwater welding or the

broader category of commercial diving. Neither commercial diving organizations nor insurance

companies maintain such an industry-wide database. While several diving companies claim to

maintain accurate records of their companies diving accidents and near misses, few or none were

willing to make this information available for this study. In general diving companies appear reluctant

to release accident data to the public.

2. The reluctance to maintain an accurate accident database has led to a dangerous industry-wide

misconception that commercial diving is relatively safe, and there is little or no need to devote

substantial resources to improvement of commercial diving safety. When questioned privately, "off

the record," most individuals involved in commercial diving were able to cite several specific diving

accidents with which they had first hand knowledge.

3. One study conducted on the causes of diver fatalities concluded that only 1 8% were caused by intrinsic

causes (equipment) while the remaining 82% of the causes were related to human and organizational

factors. Similarly a study of offshore welding accidents in the GOM found over 90% of the accidents

to be caused by HOF. Based on these statistics the development of HOF techniques is critical to the

underwater welding industry.

4. Currently, no industry specific HOF standards or specifications exists. Those HOF specifications

which do exist are generally broad in nature and are not reflect an operational focus.

5. Accidents in underwater welding should be classified as industrial accidents, accidents associated with

diving, and accidents unique to welding underwater. Most industry experts believe that topside

accidents, those resulting from general occupational hazards, account for the majority of the accidents

which occur in underwater welding. While general industrial accidents may occur at the highest rate

of any of the three types of accidents mentioned, typically the consequences of these accidents are not

as severe as those occurring as a result of the diving process or the underwater welding process.

6. The sources of potential failure for underwater welding, defined as major injury or loss of life to the

diver/welder, were classified as diving accidents, explosions, electrocution, and rigging accidents.

7. Based on personal interviews with several underwater welding professionals, the accident rate for

underwater welding operations is considerably lower than the accident rate for general commercial

diving operations. This lower rate is attributable to the significantly higher amounts of experience

underwater possessed by welder-divers in comparison to general divers.

8. A deterministic model was utilized to calculate the probability of death or serious injury as the result

of human or organizational error in the welding task of underwater welding as 3.48%. This result is
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intended to represent a worst case scenario where no consideration is given to extrinsic causes of

underwater welding accidents. Though common sense dictates that this probability of failure is too

high, it does provide an effective measure of relative risk for comparison of the effectiveness of

prescribed HOF applications. When tested using this model the HOF applications of panic and stress

screening, frequent team training, entry level welding training, dexterity screening, and

communications training were determined to be the five most effective HOF applications which should

be incorporated into an underwater welding system.

9. Several hypothesis were developed primarily as the result of qualitative information collected from

this study. These hypothesis are included below:

• While electric shock in underwater welding is normally the result of error by the welder-diver, the

severity of the injuries resulting from this shock depend greatly on the proper function of the welding

team.

• Impact injuries occurring during rigging operations are generally the result of organizational errors

• Explosions also tend to be affected more by organizational errors than individual diver-welder errors
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7. Recommendations

1

.

Efforts should be made to better diagram the underwater welding safety processes incorporating more

first-hand knowledge by underwater welding experts.

2. More research should be conducted to more accurately determine the explosion, respiration, and

impact fragility analyses.

3. The current draft of the HOF annex should provide more specific HOF tools, and its language should

be simplified to promote ease in understanding and use in the field.

4. All of the recommended HOF applications should be tested, and the outcome of these tests should be

used to prescribe applications to be included in the HOF Annex. The output of the model should be

used as a first attempt to determine the HOF applications which are the highest priority for underwater

welding operations.

5. A questionnaire should be developed for distribution to underwater welding experts asking them to

provide specific applications which they have used successfully to prevent human and organizational

errors.

6. A similar full schema, life cycle analysis should be made of the underwater welding process in which

weld quality and durability are defined as the quality attributes of interest.

7. According to members of the AWS D3b subcommittee, the analyses of wet welding and dry welding

should be conducted separately. Preferably, dry welding should be studied first because less safety

information is currently available for dry welding than for wet welding.
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itccu, Equipment, and Facilities of Nuclear Power Generating Stationj.)

The need for the application of human factors engineering (HFE) in the design, operation,

sting, and maintenance of nuclear power generating stations has been demonstrated by plant

>erating histories and regulatory and industry reviews. Prior to the incident at Three Mile

land-Unit 2 (TMI-2), little guidance for the application of HFE in nuclear power plants existed,

>en though well established HFE principles were available and routinely applied to aerospace,

jfense, and other industries. Studies of operational nuclear power plants prior to 1980 found that

any did not reflect the application of HFE in the design. The evaluation of the TMI-2 incident

vealed that proper application of HFE in nuclear power plant design could contribute to reducing

uman errors and could improve accident prevention and mitigation. Based on this potential for

nproving nuclear plant safety, the Nuclear Regulatory Commission (NRC) began instituting

aidance for the incorporation of HFE principles in the design of nuclear power plants. In 1981 the

RC published NUREG-0700, Guidelines for Control Room Design Reviews, 1 which provided HFE
iteria for evaluating existing nuclear plant control rooms and those under construction. During

lis same time industry groups such as the Electric Power Research Institute (EPRI), the Institute

Nuclear Power Operations (INPO), and others also provided research, studies, and

lethodologies to support the application of HFE to further the safe operation of nuclear power

ants.

The intent of this guide is to provide guidance to management and engineers to develop an

ltegrated program for the application of HFE in the design, operation, and maintenance of

uclear power generating stations. In both the design and construction of new nuclear power

lants and operation and maintenance of existing nuclear power plants, the design or

lodification of man-machine systems is being undertaken. Typically, many diverse activities

re being conducted independently, for example, design, construction, and development of

perating, maintenance, and testing procedures.

The above mentioned activities should be integrated to obtain an acceptable level of man-
lachine performance. An ongoing program is needed to ensure that HFE is an equal design

onsideration with the traditional engineering disciplines in those activities that have a

ignificant human interface. A significant human interface is defined as an interface between
ersonnel and equipment, facilities, software, or documentation, where the resulting human
lerformance is a determinant in the achievement of system performance. The definition for

ignificant human interface does not include those interfaces covered by Occupational Safety and

lealth Administration regulations and standards pertaining to the general safety and health of

mployees.

This guide is intended to provide overall guidance for establishing a program for the application

if HFE to systems, equipment, and facilities of nuclear power generating stations. It is applicable

o new facilities or modifications to existing facilities. Guidance is provided on the program
irganization and applicability, the plant design aspects to consider, the HFE methodologies that

nay be used, and a typical program plan for the application of HFE.
It is intended that this guide will be a top-level guide under which additional IEEE Standards

may be written to provide guidance for carrying out various specific aspects of the HFE program

plan. It is expected that these IEEE Standards may address such areas as methodologies for

evaluating man-machine performance, methodologies for considering human reliability, man-
machine interface design criteria, and others.

This standard was prepared by a Working Group of Subcommittee 7, Human Factors and
Control Facilities, Nuclear Power Engineering Committee of the IEEE Power Engineering
Society.

'This publication la available from Superintendent of Document*, US Government Printing Office, Washington, DC 30402.
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IEEE Standards documents are developed within the Technical

Committees of the IEEE Societies and the Standards Coordinating

Committees of the IEEE Standards Board. Members of the committees

serve voluntarily and without compensation. They are not necessar-

ily members of the Institute. Th' >tandards developed within IEEE
represent a consensus of the broad expertise on the subject within the

Institute as well as those activities outside of IEEE which have

expressed an interest in participating in the development of the

standard.

Use of an IEEE Standard is wholly voluntary. The existence of an

IEEE Standard does not imply that there are no other ways to produce,

test, measure, purchase, market, or provide other goods and services

related to the scope of the IEEE Standard. Furthermore, the viewpoint

expressed at the time a standard is approved and issued is subject to

change brought about through developments in the state of the art and
comments received from users of the standard. Every IEEE Standard

is subjected to review at least every five years for revision or reaffir-

mation. When a document is more than five years old, and has not

been reaffirmed, it is reasonable to conduce that its contents, al-

though still of some value, do not wholly reflect the present state of the

art. Users are cautioned to check to determine that they have the latest

edition of any IEEE Standard.

Comments for revision of IEEE Standards are welcome from any
interested party, regardless of membership affiliation with IEEE.
Suggestions for changes in documents should be in the form of a pro-

posed change of text, together with appropriate supporting comments.
Interpretations: Occasionally questions may arise regarding the

meaning of portions of standards as they relate to specific applica-

tions. When the need for interpretations is brought to the attention of

IEEE, the Institute will initiate action to prepare appropriate re-

sponses. Since IEEE Standards represent a consensus of all con-

cerned interests, it is important to ensure that any interpretation has
also received the concurrence of a balance of interests. For this reason

IEEE and the members of its technical committees are not able to

provide an instant response to interpretation requests except in those

cases where the matter has previously received formal consideration.

Comments on standards and requests for interpretations should be

addressed to:

Secretary, IEEE Standards Board

345 East 47th Street

New York, NY 10017

USA

IEEE Standards documents are adopted by the Institute of Electrical

and Electronics Engineers without regard to whether their adoption

may involve patents on articles, materials, or processes. Such adop-

tion does not assume any liability to any patent owner, nor does it

assume any obligation whatever to parties adopting the standards

documents.
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EEE Guide for the Application of Human Factor?
ngineering to Systems, Equipment, and Facilities

of Nuclear Power Generating Stations

L Scope

'his document provides guidelines for ap-

ing human factors engineering (HFE) to

systems, equipment, and facilities that

e Significant human interfaces in nuclear

/er generating stations.

2. Definitions

cnan factors engineering CflFE). An inter-

:i;'linary science and technology con-

ned with the process of designing for

nan use.

n-machine interface (MMI). The devices

ough which personnel receive information

in the system or process and the devices

iDugh which personnel exercise their control

he system or process.

nificant human interface. An interface

ween personnel and equipment, facilities,

ware, or documentation, where the result-

human performance is a determinant in

achievement of system performance.

3. Planning tor Human Factors
Engineering

iuman factors engineering (HFE) should

considered an integral pari, of the design,

ration, testing, and maintenance process.

£ is best implemented with a coordinated
In. Multiple discipline functions (for

umple, HFE, Instruments and controls,

:lear engineering, operations, testing. an<*

lintenance) mev be needed in the process as

required by the scope of the task.

Some of the activities which may be neces-

sary are:

(1) Determine the relevance of various HFE
studies, reports, arni other pertinent docu-

ments.

(2) Conduct HFE reviews.

(3) Investigate current design practices to

identify HFE concerns.

(4) Establish trade-offs of HFE considera-

tions with design, operation, testing, or main-

tenance considerations.

HFE should be considered an ongoing ac-

tivity with respect to any future design, modi-

fication to existing designs, or evaluation of

existing designs. Since the application of H7E
affects all aspects of plant design, op°-ation,

testing, and maintenance, KFE should be ap-

plied as early as possible. Fol!ov/-u? reviews

should a^so be established to confirm effec-

tiveness of resulting HFE decisions (sec 6.3).

4. Fundamental Considerations ofHuman
Factors f^giryering

Implementation of an effective IIFE process

shouM consider the following aspects which

are described separately in il through 4.6.5.

(1) Tasks

(2) Environment

(3) Equipment
(4) Personnel

(5) Nuclear operations

(6) Documentation

4.1 Task Considerations

4.1.1 Function Allocation. Function allocs -

Uoo refers to the conscious desi^r decisions

which determine the extent to which a snVer.

job, task, function, or responsibility is to be

*"es
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automated or assigned to human perfor-

mance. Such decisions should be based upon

aspects such as relative capabilities and lim-

itations of humans versus machines in terms

*f reliability, speed, accuracy, strength and
flexibility of response, cost, and the impor-

tance of auccessful and timely task or function

accomplishment to successful and safe opera-

lions. A wide variety of allocations is possible,

ranging from totally automated functions

with personnel merely overseeing and moni-

toring machine performance, through totally

human dominated manual tasks. At the finest

level of refinement, function allocation clso

includes determining specific roles and re-

sponsibilities of various personnel operating

as a team to accomplish the function.

4.1.2 Task Loading. The extent to which the

demands of any given task or group of tasks

tax the attention, capacities, and capabilities of

personnel (individually and as a crew) in the

system end thus affect performance should be

considered. The human's responsibilities in

the whole should be designed to provide ade-

quate loading.

At the extremes, performance will suffer

when humans are overloaded or underloaded.

Overloading can take the form of requiring

personnel to keep track of, and attend to, too

many factors at the same time (sometimes

referred to as channel stress) or lequiring re-

sponse at a rate beyond the human capability

(speed stress). Performance will degrade un-

der nontaxing, nonarousing, nonstimulating,

underloading conditions, all of which lead to

boredom and inattention.

The format of and rate at which data are

presented to the human is a ta3k loading con-

sideration. Also, the physioiogical limitations

of the human body, such as strength, endur-

ance, range of motion, and the capability to

apply force or torque can be challenged by the

design and requirements of a given task.

4.1.3 Precision Requirement*. Jobs, tasks,

and functions should be designed to be

compatible with human capabilities witn re-

spect to accuracy and precision. Concepts such

as the manipulatory abilities (for example,

dexterity) and discriminatory abilities in ap-

plicable sensory modes (for example, vision,

audition) should be considered. Both absolute

one-time precision and permitted variability

over repeated or sustained efforts should be

considered.

4.O.I Task Feedback. The effect of task

feedback on accuracy should be considered

Task feedback should be provided by direc:

variable measurement wherever pract'oi!

When precision or accuracy of performance is

required, immediate meaningful feedback on

the adequacy of performance should be ; ro-

vided. Performance will be effected by such

factors as the delay of feedback re'oonse 2nd

the formet and precision of the feedback

information.

4.1.3.2 Error Tolerance. The conse-

quences of and tolerance to human errors in

performance should be considered. The sys-

tem should be designed to permit recovering

from those errors which do occur. Should error

consequences be unacceptable, interlocks

should be provided, where practical, to reduce

the possibility of the errors.

4.1.4 Training. Training should be consid-

ered to the extent tnat it affects the implemen-

tation and utilisation of the equipment an*

procedures. Design conventions such as co or

codes, configuration coding, and standard-

ized directions ol motion are teldom self evi-

dent and will only facilitate operator action if

such conventions have been explicitly pro-

vided to personnel as part of their training

Hardware and documentation c*n be effec

tively utilized and maintained only by prop-

r.rly trained personnel.

4.2 Environment Considerations.

4.2.1 Temperature, Airflow, and Humidity.
There are certain limits in temperature, air-

flow, and humidity which define a '-oirifort

zone preferred by personnel. Exact limits »ar>

with the nature of the activities being per-

formed. When conditions exceed these limits,

decrements ir. numan performance may oc-

cur, either from a lack of concentration in-

duced by discomfort or, as the limits are

greatly exceeded, limitations due to either

additional clothing or actual physiological ef-

fects. The three factors interact and should not

be investigated separately. Trade-off deci-

sions should consider environmental condi

tions for the plan, equipment as well as Lh.-

comfort requirements of plant personnel.

A2.2 Illumination and Acoustics. Ar with

other aspects of the environment, there are

certain ranges to the ambient light and soui.d

which ar* best suited tor a particular human
activity. When light levels are inadequate for

&*
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thf task, persons may not be able to perform

sm'ely or reliably, especially when they can no

bnfer see the details of what they are doing.

Similarly, ambient illumination can be ex-

cessive for a given task, literally being too

bright for a person to see or recognize detail.

Usually, problems are not encountered with

overall ambient levels as much as with local-

ized variations resulting in contrast or glare

problems. Interactions in the use of colors in

the environment can have several effects on

performance and should be considered. The
overall level and spectral composition of am-
bient sound can affect human performance,

either from direct physiological effect, or

through disruption of communicp'icns.

4J2J3 Workplace Size, Geometry, and Lay-
out. Human performance can be affected by

the size, geometry, and layout of the work-

place, wher considered in relation to the tasks

:0 be performed and the number of personnel

performing the tasks. Adequate apace is need-

ed to accommodate the number of personnel

expected to be in the workspace, allowing for

normal movement, (including when special

bulky clothing is used). Expected traffic pat-

terns should be accommodated. The worksta-

tion should be configured euch that personnel

can see cr reach the displays and controls, and
communicate with other personnel if re-

quired.

4.2.4 Nuclear Radiation and Other
Environmental Hazards. There are a number
of environmental considerations related to

health-threatening agents, toxins, substances,

and energies. From the earliest stages of de-

sign develop: :ent, every effort should be made
to design the workplace, allocate the functions,

and design the personnel tasks to minimize
the exposure to such elements. When exposure

is probable, consideration should be given to

the effects the hazards may have, and the ef-

fects of any countermeasures required, such

as respirator*, protective clothing, and control

of exposures.

4*8 Equipment Consideratic as,

4,8.1 User OperabiMty. There are certain

type* of equipment (for example, Jisplaya and
controls) v/ithin the system which require

particular attention from the aspect cf human
factors engineering. The displays should be

usable by the personnel who must use and
respond to them. This includes concepts such

as visibility, readability or legibility, ability

to access information, the attention attracting

capability of the display, the meaningfulness

of the display format (that is, its understand-

ability without interpretation; and the preci-

sion to which the output car be read AH
controls should be examined, considering as-

sets such as how much force or torque is

required for operation, the precision requurcj,

response time, and ease of operabil'ty. Inher-

ent to such considerations is the physice! loca-

tion of the control or display with respect to the

human operator.

4.3.2 Application. Human engineering

evaluation of equipment should also include

consideration of the actual application, it i:

ei.ii/ely pcnsible for a given piece of equip-

ment to have an outstanding design from a

human engineering viewpoint in one appli-

cation yet be unacceptable for another. For

some applications, digital readouts are re-

quired for high-accuracy readings but may be

inappropriate for check-status readings or

when rapidly comparing several separate

readings, observing trend information or

rapidly changing data. The suitability of a

given display is determined by the typ° of

information neede
,x

om the display (for

example, accurac.- . quantitative versus
qualitative, history cr trend, simple status—

on/ofT) and how the operator must use the

information. Thk determines which display

formats are suitable to the application.

Similar evaluations sr.ould be made of

controls in terms of expected use, considering

aspects such as limb used (hand, foot, or finger

operated), continuous versus discrete outputs,

required feedback, time, frequency, and
strength needad.

4.8.8 Maintenance. A human factors evalu-

ation of equipment should consider the inter-

face with personnel engaged in maintenance
or repair of the items. Consignations include

the ease with which the equipment can be as-

sembled or disassembled, tools required, in-

te-changeability of parts, features necessary to

prevent incorrect assembly, and level tf

training and skill required to maintain ti e

item correctly.

4.8.4 Accessibility. Equipment should be
designed and located such that it is rendi?y

accessible for operation or for maintenance
action. Implementation of this concept usually

requires some trade-off, arH prioritization

K'
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should be based en task demands (for

example, expected frequency of use, special

tools, local environmental condition*, time

constraints) when access is required. Under
some circumstances, it may be prudent to

deliberately impair ".he accessibility of an

item. This may be desirable, for example,

when inadvertent actuation of a control could

produce a major plant transient. Under those

circumstances, devices such as guardrails

and cover plates, or two-hand or two-step

operations should be considered.

4.3.5 Testability. Equipment should be
testable to the extent feasible, to verify proper

operation or need for maintenance. Test re-

sults should be unambiguous. The require-

ments for testing equipment should be consid-

ered during the design. Adequate space

required for test personnel to perform then

tasks should also be provided.

4.3.6 Dependability. The dependability of

equipment, especially in terms of how it will

influence personnel actions, 6hould be con-

sidered. The operator interface equipment
should be as dependable as possible in order to

ensure operator confident A universal ini-

tial reaction in any transient is to assume tha*

the indicators are malfunctioning. It is there-

fore necessary to conquer two problems when
designing equipment: 1) how to determine
when a piece of equipment is malfunctioning,

and 2) what ic the appropriate response(s)

when the equipment does malfunction. This

m&y include using redundant, diverse, alter-

nate equipment, or positive indication of

equipment malfunction.

4.3.7 Standardized Conventions and
Nomenclature. To minimize potential for er-

rors and facilitate training and actual op-

erations, man-machine interface equipment
should be standardised as much as is practi-

cal. Design conventions should be established

and should be consistently followed. Some
conventions involve the coding or meaning
associated with features such as size, shape,

color, or orientation. Other conventions may
relate to the relative locations of components
(for example, "A" above or to left of "B"; dis-

play above associated control,). Another con-

tention is the direction of motion of control or

display pointers.

In many cases there are preestablished con-

ventions based on historical usage. These
may vary from culture to culture or industry to

industry. A preesiablished convention unique

to a given group of people is referred to as a

"population stereotype". Where such stereo-

types are known to exist, it will be necessary to

determine the existing conventions of the ex-

pected population of users and ensure that they

are consistent with the stereotyped conventions

and expectations.

Standardized nomenclature and abbrevia-

tions should be used for equipment in al! text,

!abels, and drawings.

44 Personnel Considerations

4A.I Physiological Limitations. The limits

of the human body, in terms of strength and
range of motion of various limbs and joints,

tolerance to temperature and other environ-

mental stressors, and other limits in terms of

physiological fatigue and impairment should

be considered.

4.4.2 Anthropometry. The workplace layout

should be consistent with the body dimensions

of the personnel interfacing with it, in terms of

reach distances, seating height, "lines of sight,

and physical clearances. The relevant popu-

lation of u«:ers and maintainers should be

identified, and the appropriate sources of an-

thropometric data (which vary by age, sex, and

ethnic groups) should be used in the HFE de-

sign process.

4.4.3 Sensory Limitations. The capabilities

and limitations of human sensory perception

should be considered. Display signals must
exceed the minimum threshold levels in order

to tx? perceived, without grossly exceeding tol-

erance levels and saturating the sensory

mode. The minimum levels of difference re-

quired to discern signals, discriminate be-

tween colors, and thus attract attention or per-

mit detection, should be considered.

AAA Memory. The nature and limitations

of both short- and long-term human memory
should be considered. This becomes important
in the design of display formats, preparation

of instructions, and the development of proce-

dures The use of memory aiJs designed into

interfaces should be considered to assist hu-

mans in the recall and use of knowledge.

4AJS Decision Making. The capabilities

and limitations of humans to make and im-

plement decisions should be considered. Rel-

evant system elements and interfaces should

be designed to facilitate the decision-making

process. Accuracy in decision performance

%*
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decreases when people are required to respond

too rapidly (speed stress) or are subjected to too

many different stimuli (load stress).

In the allocation of functional require-

ments, the risks of making an incorrect deci-

sion should be considered for each alternative

being evaluated. Designs should be simplified

or enhanced to prevent or minimize situations

where human decisions are made under un-

certainty.

4/4.6 Experience and Education Level The

inherent task requirements should be matched
to the capabilities and knowledge level of the

applicable personnel. Procedures and other

documentation should not exceed the reading

and comprehension abilities of the users. The
design should reflect the competence, level of

technical expertise, and the training of the

personnel. There are frequent needs for trade-

offs in these areas. If machine and system

elements are designed to put minimal
demands on operating personnel, the system

may become complex, thus requiring highly

trained maintenance personnel.

4^4.7 Human Adaptability. Humans have a

wide range of adaptability. Even in ill-

eonceived designs, with time or training,

humans are sometimes sufficiently adaptable

to offset the design deficiencies. This should

be recognized when evaluating existing

designs or drawing on past experience and
practices to develop a new design. A conscious

effort should be made to ensure that there are

no underlying design deficiencies which can

be masked by adaptable human performance
under normal conditions. Under stressed

conditions, the human may have exhausted
this adaptability and may no longer be able to

control the situation or compensate for the

inherent design deficiency.

4AS User Acceptance. User acceptance of

system design can severely affect system per-

formance and should be considered in system

desifn. When users accept a design, they may
adapt and compensate for deficiencies. How-
ever, if the users find the system unacceptable

for any reason, they may not attempt to com-

pensate for design deficiencies, and may
therefore not use the system properly. System
performance could thus he degraded.

The acceptance factors may be independent

of the specific design features but relate to

matters such as prestige, economics, perceived

safety, or a reluctance to change.

4-5 Nuclear Operations Considerations

4.5.1 Operational Safety. Operational safe*.;.

of nuclear power-generating stations involves

many major concerns such as maintaining

reactor coolant inventory, preventing ra-

dioactive releases, and removing decay hear

during shutdowns. These unique concerns

place major emphasis on error-free operation

Human factors engineering applies struc-

tured analysis of operating modes and activi-

ties to improve operational safety by imple-

menting man-machine interfaces that

improve human performance and redure hu-

man error.

4.5*2 Long Continuous Operation. Good

work space design, good environmental

design, and good man-machine interfaces

can reduce stresses often noted with shift

operation (stresses which often contribute to

errors). For instance, good work space design

should consider the need for both, resting and

mobility.

4.5.3 Shift Rotation. Operating shifts are

rotated periodically to alleviate social and
physical concerns of personnel. Shift rotation

affects human circadian rhythms, posing

stress concerns; some of these concerns can be

alleviated with good work space design and

good environmental design.

4.5.4 Shift Turnover. Proper work space de-

sign should accommodate two shifts during

turnover D»-oper turnover methods are im-

portant in assuring that the next shift has

received and understands current operating

status of all plant systems and equipment
4.5.5 Normal, Startup, Shutdown, and

Emergency Operation. Operation of nuclear

power plants involves long periods of normal
operation, short periods of startup/shutdown

operations, and very short infrequent periods

of abnormal and emergency operations. The
use of HFE to improve human response should

consider the effects of operator practice and
experience related to the frequency of

performing emergency operations versus
normal operations. Also, task loading im-

posed during design basis events shouM be
considered.

4.5.6 Total Plant Operation. Operating
staffs generally operate most or all plant
equipment. Man-machine interfaces for all

plant equipment should be standardized to the

extent practical, in order to reduce confusion

and possible errors.
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Development of an HOF Annex for Underwater Welding

10. Appendix B - Standard Practice for F1337-91 HUMAN

ENGINEERING Program Requirements for Ships and Marine

Systems, Equipment, and Facilities
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Standard Practice for

Human Engineering Program Requirements for Ships and

Marine Systems, Equipment, and Facilities
1

Tfa ttndtrd » awed aadcr *e Cud drsBjnaor* F I JJ7; te mmber immtdrntttj fbUoari-i ** dentnitiOT fcNfacates a* year (V
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rueeracnpt epntoo («) rndtcsfc* to edrtonal ebuee ooct (he test icvisM or approval

1. Scope

1 . 1 This practice establishes and defines the requirements

for applying human engineering to the development and

acquisition of ships and marine systems, equipment, and

facilities. These requirements are applicable to all phases of

development, acquisition, and testing and shall be integrated

with the total system engineering and development, and test

effort. It is not expected nor intended that all of the human

engineering activities should be applied to every marine

program or program phase. Therefore, these activities shall

be tailored to meet the specific needs of each program and

the milestone phase of the program within the overall life

cycle. This tailoring shall be performed by the procuring

activity or by the contractor or subcontractor with the

assistance and approval of the procuring activity in order to

impose only the essential human engineering requirements

on each program. Guidance for selection ofonly the essential

requirements is contained in Appendix XI.

2. Referenced Documents

2.1 ASTM Standard:

F 1 166 Practice for Human Engineering Design for Ma-
rine Systems, Equipment and Facilities

2

2.2 Other Standard

SNAME Sample Model Specification for Human Engi-

neering Purposes—Technical and Research Bulletin

4-223

3. Terminology

3. 1 Descriptions of Terms Specific to This Standard:

3.1.1 arrangement drawings—engineering design draw-

ings that provide plan, sectional, and elevation views of: ( /)

the configuration and arrangement of major items of equip-

ment for manned compartments, spaces, or individual work

stations, and (2) within the work station, such as in a

modular rack or on a fiddleboard.

3.1.2 critical activity—any human activity that if not

accomplished in accordance with system requirements (that

is, time limits, specific sequence, necessary accuracy) will

have adverse effects on system or equipment cost, reliability,

efficiency, effectiveness, or safety.

3.1.3 cultural expectation—the cause and effect relation-

Tku practiot it under the jvritdictioo of ASTM Coumiaee F-2S on

SH pbtiWint inlslK direct rCBpowtbilkv of Subcommittee FZS.ffT on General

RcQutrcmeoti.

Canetu edition approved April IS. 1991 Published Homnka 1991.

1 Amuai Book ofASTU Standards. Vol 01 .07.

1 Avtikbte for* Society o/ N*»tl Architects and Mint* EatiMen, 601

Pftvoru* Ave . Jersey City. NJ 07306, *n» Tertuier.) Coordinator.

ships (for example, red means stop or danger) that humans

learn from their culture.

3.1.4 duty—a set of operationally-related tasks within a

given job (for example, communicating, operator mainte-

nance).

3.1.5 function—an activity performed by a system (for

example, provide electric power) to meet mission objectives.

3.1.6 human engineering—a specialized engineering disci-

pline within the area of human factors that applies scientific

knowledge of human physiological and psychological capa-

bilities and limitations to the design of hardware to achieve

effective man-machine integration.

3.1.7 human factors—the application of scientific knowl-

edge about human characterisiics, covering both biomedical

and psychosocial considerations, to complete systems, indi-

vidual equipments, software, and facilities This application

is through such specialized fields as human engineering,

manning, personnel selection, training, training devices and

simulation, life support, safety, job performance aids, and

human performance testing and evaluation.

3. 1 8 human interface—any direct contact (that is, phys-

ical, visual, or auditory) with a piece of hardware or software

by a human operator or maintainer.

3.1.9 Job—the combination of all human performance

required for operation and maintenance of one personnel

position in a system.

3.1.10 life support—that area of human factors that ap-

plies scientific knowledge regarding the effects of environ-

mental factors on human behavior and performance to items

that require special attention or provisions for health promo-
tion, biomedical aspects of safety, protection, sustenance,

escape, survival, and recovery of personnel.

3.1.11 mission—a specific performance requirement im-

posed on one or more systems (for example, unload cargo)

within the operational requirements.

3.1.12 operational requirements—requirements under

which the platform, system, equipment, or software will be

expected to operate and be maintained (for example, day/

night, all weather operation, sea state, speed, endurance)

while completing a specific mission or missions.

3.1.13 panel layout drawings—detailed drawings that in-

clude such features as a scale layout of the controls and
displays on each panel or an item of equipment such as a

shipboard command console; a description of all symbols

used; identification of the color coding used for displays and
controls; the labeling used on each control or display; and
the Identification of control type (for example, alternate

action or momentary), also screen layouts for software

generated displays.

3.1.14 platform—the major hardware (for example, ship,

I
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off-shore rig, barge, submarine) on, or in which, the indi-

vidual equipment system, or software will be installed or

added.

3.1.15 spatial relationships—placement of multiple but

separate components of a system together, so it is visually

obvious that the components are related and used together,

or placement of identical components used on multiple

systems to provide the user with a spatial due as to where the

components are located.

3.1.16 subiask—activities (perceptions, decisions, and re-

sponses) that fulfill a portion of the immediate purpose

within a task (for example, remove washers and nuts on the

water pump).

3.1.17 system—t composite of subsystems, including

equipment, communications, software, and personnel that

other independently, or in conjunction with other systems,

performs functions.

3.1. IS system analysis—a basic tool for systematically

defining the roles of and interactions between the equip-

ment, personnel, communications, and software of one or

more systems. It is an iterative process, requiring updating.

Used in the early phases of design, it can be useful in

allocating assignment of tasks to personnel, equipment,

software, or some combination thereof. Dooe in later design

stages, it can serve as the basis for the arrangement of

equipment and work stations.

3.1.19 task—a composite of related activities (percep-

tions, decisions, and responses) performed for an immediate

purpose, written in operator/maintainer language (lor ex-

ample, change a water pump).

3. 1 .20 task analysis—a method used to develop a time-

oriented description of the interactions between the human
operator/maintainer and the equipment or software in ac-

complishing a unit of work with a system or individual piece

of equipment. It shows the sequential and simultaneous

manual and intellectual activities of personnel operating,

maintaining, or controlling equipment, in addition to se-

quential operation of the equipment.

3.1.21 task element—the smallest logically and reason-

ably definable unit of behavior required in completing a task

or subusk (for example, apply counterclockwise torque to

the nuts, on the water pump, with a wrench)

3.1.22 vendor drawings—4cagn drawings prepared by the

manufacturer of an individual piece of equipment which is

purchased for installation aboard a ship or other marine
platform.

4. Sammary of Practice

4.

1

Human Engineering Program Plan—The human en-

gineering program plan, in accordance with the requirements

ofthis practice and the equipment or ship specification, shall

include the tasks to be performed, human engineering

milestones, level of effort, methods to be used, design

concepts to be used, and the test and evaluation program, in

terms of an integrated effort within the total project

4.2 Quality .Assurance—Verification of compliance with

the requirements of this practice and other human engi-

neering requirements specified by the contract wiQ be the

responsibility of the procuring activity. Human engineering

performed during the development program by a contractor

or subcontractor shall be demonstrated to the satisfaction of

the procuring activity at the scheduled design and configura-

tion reviews and inspections, as well as during development

test and evaluation inspections, demonstrations, and tests.

4J Nonduphcahon—Tbe efforts performed to fulfill the

human engineering lequkements specified herein shall be

coordinated with, but not duplicate, efforts performed in

accordance with other requirements. Necessary extensions or

transformations of the results of other efforts for use in the

human engineering program will not be considered duplica-

tion. Instances of duplication or conflict shall be brought to

the attention of the procuring activity.

4.4 Cognizance and Coordination—The human engi-

neering program shaD be coordinated with maintainability,

system safety, reliability, survivabslity/vulnerabiiity, and in-

tegrated logistic support, as weO as other human factors

functions, such as life support and safety, personnel selec-

tion, preparation of job aids, and training. Results of human
engineering analysis or lessons learned information shall be

incorporated into the logistic support analysis as applicable

The human engineering portion of any analysis, design and

development, or teat and evaluation program shall be con-

ducted by, or under the direct cognizance of personnel

properly trained and experienced in human engineering and

assigned the human engineering responsibility by the con-

tractor or subcontractor.

5. Stgnffleaac* aaa Use

5.1 Intended Ite—Compliance with this practice will

provide the procuring activity with assurance that the

operator/maintainer win be efficient and effective in the

operation and maintenance of systems, equipment and
facilities. Specifically, it is intended to ensure that

5.1.1 System performance requirements are achieved by

appropriate use of the human component,

5. 1 .2 Proper design of equipment, software and environ-

ment permits the penonrel^uipment/software combina-

tion to meet system performance goals,

5.1.3 Design features will not constitute a hazard to

personnel,

5.1.4 Trade-offs between automated vs manual operation

have been chosen for peak system efficiency within appro-

priate cost limits,

5.1.5 Application of selected human engineering design

standards are technically adequate and appropriate,

5.1.6 Systems and equipments are designed to facilitate

required maintenance,

5.1.7 Procedures for operating and maintaining equip-

ment are efficient, reliable and safe,

5.1.8 Potential error-inducing equipment design features

are eliminated, or at least, minimized,

5.1.9 Layouts and arrangements of equipment afford

efficient communication and use, and
5.1.10 Contractors provide the necessary, technically

qualified manpower to accomplish the objectives listed.

52 Scope and Nature of Work—The human engineering

effort shall include, but not necessarily be harmed to, active

participation in three major interrelated areas of platform,

system, and equipment development
5.2 1 Analysis—Starting with a mission analysis devel-

oped within basehne operational requirements, the functions

that must be performed by the system in achieving hs

°lb
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nuMot objectives sbaD be identified and described. These

functions shall be analyzed to determine the best allocation

to personnel, equipment, software, or combinations thereof.

Allocated functions shall be further dissected to define the

specific tasks that must be performed to accomplish the

functions. Each task shall be analyzed to determine the

human performance parameters, the system/e<|uipineut/

software capabilities, and the operational/environmental

conditions under which the tasks are conducted. Task

performance parameters shall be quantified, where possible,

and in a form pennittinf effectiveness studies of the crew-

equipment/software interfaces in relation to the total system

operation. Human engineering high risk areas shall be

identified as part of the analysis.

52.2 Design and Development—Design and development

of the equipment, software, systems, and total platforms

requiring personnel as operators or maintainers, or both,

shall include a human engineering effort that will ensure that

adequate and appropriate human engineering design stan-

dards are incorporated into the overall engineering design.

Such standards may be specifically stated in the system

equipment, software, or facilities acquisition specifications,

or they may be generated from the analysis work completed

prior to design and development

3.2.3 Test and Evaluation—-Test and evaluation shall be

conducted with the newry designed equipment, software,

facilities, and environment to verify that they meet human
engineering and life support criteria and are compatible with

the overall system requirements. This shall include periodic

on-site checks of the platform, systems, equipment, software,

or facilities during construction to ensure that changes are

not made during construction that would degrade earlier

human engineering efforts.

6. Hans* Engineer lag Activities

6.1 Scope—Toe human engineering program shall in-

clude the following activities:

6.1.1 Operational Requirements (OR)—Operational re-

quirements (ORs) are established first to define the parame-

ters within which the individual equipment, system, or total

platform shall be expected to perform. ORs shaB be ex-

pressed in such term* as the weather condition* under wbk±
it must operate (for example, rain, mow, set state touts),

number of days it must operate without being refueled or

re-firpptied; and maximum number of personnel that win be

available to operate and maintain the hardware. Human
engineering shall be considered in the development of ORs,

especially wfaea the ORs include requirements on the

number, type, or training of operators or maintainers, or

both.

6.12 Mission Requirements Analysis—Mission require*

meats define the performance parameters of the equipment,

system, or total platform in greater detail than that provided

by the ORs, and in terms of specific activities the hardware/

software is supposed to accomplish. Human engineering

sbaD be involved in establishing the mission requirements

since the human's capabilities or limitations may well be a

controlling factor regarding whether or not the mason
requirements can be met

6.1 3 System Requirements Analysts—Synem require-

ments analyses define the specific systems that will be needed

to successfully complete each of the missions delineated

above. Human engineering shall be involved in establishing

system requirements, since some systems can require greater

numbers of personnel and higher skiD levels for operators or

maintainers than others. Human engineering data from

existing systems similar to those being proposed for the new

design may be used as a baseline in defining the new system

requirements.

6.1.4 Function Definition—The functions that must be

performed by each system to achieve the desired missioD

objectives shall be defined. This definition sbaD be done

without consideration as to whether the function win be

performed by a human, by a machine, or by a combination

of the two. Functions shall be stated as a required action (for

example, monitor, receive, communicate, view, send, cali-

brate). Functional block diagrams shall be used, as appro-

priate, as a presentation tool Functional definitions shall be

as detailed as is necessary to permit the successful aUocatwri

of the functions. The transfer and processing of information

(for example, verbal cornmurucations, electronic transmis-

sions, printed material) shall be identified as a function but

without reference to specific machine or human involve-

ment Human engineers shall be involved in identifying

functions, since this activity serves as the base for the next

step, winch inctudes major participation by human engi-

neering.

6.1.3 Function Allocation—Each function identified from

the previous step shall be assigned to be machine imple-

mented, performed by software, reserved for the human
operator/maintamer, or performed by some combination

thereof. Human engineering specialisu shall participate in

the function allocation process to ensure that each function

assigned to the human b within the human's capability

Known human engineering experiences with nun-machine
functional allocations on existing equipments, systems, or

platforms similar to those under evaluation; personal human
engineering experience in the function allocation field; and

available information on human physical and psychologka!

performance capabilities shall be used when applicable in

determining function allocations.

6.1.6 Equipment Selection—-Hardware and software thai

be selected to perform those functions assigned to them from

the function allocation activity. Human engineering princi-

ples and design standards shall be included, along with other

design considerations, m identifying and selecting that hard-

ware/software. Human engineers shall ensure that the equip-

ment provides the human with the opportunity to complete

those functions assigned to the operator/maintainer, and that

h complies with aD of the applicable design criteria contained

in Practice F 1166, at weO at other human engineering

design criteria contained in the contract, or in other human
eagiiieering design standards referenced in the contract

Known human engineering problems with equipment now
in service (for example, information from equipment casu-

alty reports or personnel injury data associated with equip-

ment fcilure) that is smtihu to that being considered,

personal experience with applying human engineering design

criteria to equipment design, and review of potential supplier

engineering data are examples of the human engineering

resources that shall be used in assessing the acceptance ofthe

selected equipment from a human engineering viewpoint

ft
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6.1.7 Human Engineering System Analysis Report

(HESAR):
6.1.7.1 HESAR (TYPE 1}—Type 1 HESARx, which are

prepared early in the design process (for example, during

feasibility design), shall allow for the evaluation of the

appropriateness and feasibility, from a human engineering

perspective, of the mission, system, and functional require-

ments, and to serve as one basts for decisions made during

the functional allocation effort. The HESAR shall contain

the results of the mission, system, and functional require-

ments analyses and describe the human engineering ratio-

nale for. or contribution to, each. In addition, the potential

impact, or the proposed use, of these analyses for future

human engineering activities (for example, allocation of

functions, equipment selection, detail design of equipment,

arrangement of spaces or compartments) shall be discussed.

The objective of the early HESAR shall be to demonstrate

that human engineering considerations have been adequately

addressed in the establishment of the mission, system, and

functional requirements, and that there exists a sound basis

on which to allocate the functions, select the equipment, and

perform the detail design of the individual piece of equip-

ment, system, or total platform.

6. 1.

7

2 HESAR (TYPE 2)—k Type 2 system analysis,

completed late in the design process (for example, during

development of construction drawings or production draw-

ings) shall be done to provide a bests on which to base a

particular equipment design, or system or compartment
arrangement In completing a Type 2 system analysis the

following factors shall be considered, and shall be discussed

in the HESAR: (1) description of the equipment, console,

compartment, system, or work station on which the analysis

was conducted, (2) externally imposed design requirements

or criteria over which the human engineer had no control

(for example, number of orjerators/maintainers, specific

types and numbers of consoles, previously determined man-
machine function allocations, predetermined locations of

hardware), (J) communications requirements (for example,

telephone, voice, sound powered phones, electronic), (4)

work environment, (5) mission, system, backup, and func-

tional requirements, and (6) human physical and psycholog-

ical capabilities within the context of the existing design

parameters. In conducting the analysis, consideration shall

be given to such issues as projected work loads for each

manned position; the kind, amount, and criticality of the

information that goes into, and out of, each operator/

roaintajner station; the need for direct voice or visual

communication between manned positions; location and

suitability of backup equipment in case the primary hard-

ware fails, and the interactions that are required between

personnel or equipment, or both. Using the completed

analysis, the human engineer shall participate in establishing

the fmal design or arrangement of a piece of equipment, a

system, or the total platform.

6.1.8 Task Analysis:

6.1.8.1 Concurrence and Availability—All task analyses

shall be modified as required to remain current with the

design effort and shall be available to the procuring activity

as requested.

e*. 1 -S_2 Gross Task Analysis (GTA)—A OTA consists of

defining the major tasks required of the human operator/

maintainer to complete each function identified and allo-

cated to the human during the functional allocation activity

(see 6.1.5). The GTA shall present these tasks in the

sequence in which they must be completed and against an

i^Hi****^ time line reference. Information flows into, or

out from, the human shaD be included as a task. The GTA
shall include both manual and cognitive tasks, and shall be

written in operetOT/rnemtamer language (for example,

change fuel pump, steer ship on constant heading, calculate

fuel consumption rate). Where GTAs are required they shall

be performed for both normal and emergency operating

conditions. The GTAs shall be used to determine, to the

extent practicable, whether the system performance require-

ments (see 6.1.3) can be met with the function aUocations,

backup facflrtics, and equipment selections that have been

previously made. These anarysej shaD also be used as basic

information for developing preliminary manning levels;

equipment prw crimes; personnel spfl, training, and com-

munkation requirements; and as logistic support analysis

inputs. Personal experience of the human engineering ana-

lyst in the preparation of GTAs, information from equip-

ment vendor operation and maintenance mannals, inputs

from the design engineers (either at the procuring activity or

the contractor) of the system(g) or equipment under evalua-

tion, and established tasks on equipment similar to that

under investigation are all resources that shall be used as

appropriate in the creation of GTAs. GTAs shall be pre-

sented in diagrammatic form (for example, operational

sequence diagrams) unless otherwise approved by the pro-

curing activity.

6 1.83 Critical Task Analysis (CTAh-TYtcm gross tasks

identified in the GTA that require critical human perfor-

mance (for example, no deviation from a fixed sequence;

task completion within a fixed, and limited, time frame,

accurate setting or reading of an important control or

displayX reflect possible unsafe practices, or that are subject

to promising improvements in operating efficiency shall be

identified and further analyzed upon approval of the pro-

curing activity. CTAs require detail to the subtask (for

example, remove hose damp from hose on the discharge side

of water pump), or even task element level (for example, turn

screw on the hose damp on discharge side of water pump
counterclockwise with Phillips bead screwdriver). Other

inputs which shall be made to a CTA include: (/) informa-

tion required by the operator/maintainer for task mrtiation,

(2) all information available to the operator/maintainer, (J)

cognitive functions required of the operator/maintainer to

processor act on the information, (4) actions required by the

human bated on the cognitive processes, (5) workspace

envelope required by the actions, (6) workspace available,

(7) frequency and accuracy required of the actions, (8)

feedback required to the operator/maintainer regarding the

adequacy of his/her actions, (9) tools or equipment, or both,

required by the human, (JO) job aids or references required,

(//) number of personnel required or provided, as weB as

their specialty and experience, (12) communications re-

quired, and the types ofcommunications, ( 13) safety hazards
involved, (14) operational requirements of the human (for

example, hours on duty, numbertrf repetitive motions), (15)
backup facilities available, and (16) operator interaction

where more than one person is involved. The format shafi

K
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include a time line tax for presenting the information listed

herein. Task analysis may be produced by automated pro-

trams after review and approval of the programs by the

procuring activity.

6.1.9 Human Engineering Design—Hunan engineering

principles and design standards shall be applied to the design

of all compartments, spaces, systems, individual equipment,

work stations, and facilities in which there is a human
interlace Drawings, specifications, analyses, or other docu-

mentation shall reflect incorporation of these human engi-

neering principles and standards, Where specific design

criteria are required, they shall conform to Practice F 1 166

or other human engineering criteria required by the contract.

Design of the compartments, spaces, equipments, systems,

work stations, and facilities shall provide for both normal

and emergency conditions, and shall consider at least the

following where applicable:

6.1.9.1 Environmental conditions, such as temperature,

humidity, air flow, noise and illumination levels, and atmo-

spheric contaminants,

6.1.9.2 Weather and climate, such as rain, snow, and ice,

6.1.9.3 Platform motion (for example, ship roD and

pitch},

6.1.9.4 Space (that is, access) requirements for personnel

to perform operations and maintenance, keeping in mind the

special dothing or protective gear they may be wearing and

the tools they may be carrying,

6.1.9.3 Safe and efficient walkways, ladders, work plat-

forms, and inclines,

6.1.9.6 Adequate physical, visual, and auditory links be-

tween personnel, and between personnel and their equip-

ment so that reach and visual envelopes are within standard

limitations,

6.1.9.7 Provisions to minimize physical or emotional

fatigue,

6.1.9.8 The effects on physkriogica] and psychological

performance due to special clothing, or chemical, biological,

and radiological (CBR) protective suits,

6.1.9.9 Provisions to maximize cultural expectations and
spatial relationship* in the design,

6.1.9.10 Equipment removal and stores handling provi-

sions,

6.1.9.11 Crew safety requirements, and

6.1.9.12 The range in physical size (for example, 5th to

95th percentile dimensions) and mental capabJlirirs of the

anticipated users of the equipment

6.1.9.13 The adequacy of including human engineering

principles and design standards into the overall design effort

shall be evaluated during design reviews. Where such reviews

involve a contractor or subcontractor, the individuals as*

signed the human engineering responsibilities by these orga-

nizations shall participate in the reviews. At quarterly design

reviews these individuals shall provide the same type of

presentation as is made by the other engineering disciplines.

6.1.10 Application cf Lessons Learned Information—In-

formation on known or suspected human engineering prob-

lems from past or existing equipments, systems, or total

platforms similar to that under design shaB be obtained and

used in the design of the new equipment, system, or

platform. This information shall be acquired from such

sources at: personal inspection of current hardware, system,

or platform (for example, conduct a ship check or ship

survey), interviews with past or current operators or

mainttinera, or both, a review of sea trial deficiency cards,

discussions with past or current dcwgncn of similar equip-

ments, system*, or platform*, and investigation of personnel

injury or equipment casualty reports, or both. Any summa-
tion reports prepared from the acquisition of this data shall

provide the information by equipment, system, or ship

compartment and shall include the ship work breakdown

structure (SWBS) number or other corresponding specifica-

tion section for each identified human engineering problem

6.1.11 Engineering Design Drawings—Human engi-

neering principles and design standards shall be reflected in

the engineering design drawings produced for marine sys-

tems and equipment These principles and standards shall be

incorporated in all engineering drawings that involve a

human interface and are developed during the various design

phases. Specific types of drawings to which the human
engineering principles and design standards shall be applied

include: overall platform (for example, ship, off-shore rig,

barge) arrangement drawings, individual compartment or

space arrangement drawings, zone arrangement drawings,

console or work station panel layout drawings, individual

equipment design drawings, piping arrangement drawings,

arid other drawings depicting the design or arrangement, or

both, of equipment requiring operation or maintenance, or

both, by humans. The drawings shall comply with the

applicable criteria contained in Practice F 1166 or other

human engineering design standards, or a combination

thereof, as specified in the contract

6.1.11.1 Where the drawings are produced by a con-

tractor, a specific list of the engineering drawings or a

description of the types of drawings that wfl] receive human
engineering input shall be included in the contractor's

human engineering program plan (HEPP). Personnel as-

signed human engineering responsibility by the contractor

shall approve all drawings included in the HEPP Ust before

the drawings are released for production

6.1.12 Human Engineering in Vendor Hardware/Soft-

ware—-Human engineering principles and design criteria

from Practice F 1 166 (or other approved design standards)

shall be incorporated into hardware and software purchased

by the contractor for inclusion on a marine pktform or

major system. The human engineering program plan shall

include a fist of the hardware/software hems on which

human engineering principles and design criteria wfl] be

imposed. The contractor shall also ensure that the vendor

hardware/software complies with the design standards of

Practice F 1 166 after installation in or on the platform or

system.

6.1.13 Studies, Experiments, and Laboratory Tests—The
contractor shall conduct experiments, tests (including dy-

namic simulation per 6. 1 . 1 4), and studies required to resolve

human engineering and lift support problems specific to the

system Human engineering and life support problem areas

shall be brought to the attention of the procuring activity,

and shaB include the estimated effect on the system if the

problem is not studied and resolved. These experiments,

tests, and studies shall be accomplished in a timely manner,

that is, such that the results may be incorporated into the

design. The performance of any major study effort shall

%,
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require approval by the procuring activity.

6.1. 14 Dynamic Simulation Studio—Dynamic simula-

two studies shall be used aa human engineering design too!

when necessary for the detail design of equipment requiring

critical human activity (for example, precise amp maneu-

vering or handling tasks). If such studies are completed, the

umuurbon hardware/Boftware ahoukt be evaluated at a

training tool at wcM, and shall be addressed in the dynamic

simulation plan. No dynamic simulation studies shall be

performed without prior approval of the simulation plan by

the procuring activity.

6.1.15 Mockups and Models—Modeb and mocknpt built

to resolve access, workspace design, equipment arrange-

ments, or other human engineering problems shall be

constructed at the earnest practical point and wefl before

fabrication of the compartment, system, or equipment. The
proposed human engineering program plan shall specify

which modeb and mockups the contractor proposes to use

for human engineering purposes. Mockups shall be rail scale

and models shall be built to SNAME Sample Model Specifi-

cation for Human Engineering Purposes Technical and

Research Bulletin 4*22. For models and mockups specified

primarily for human engineering use, the workmanship shall

be no more elaborate than is necessary to determine the

adequacy of size, shape, arrangement, access, or panel

content of the equipment for human use. Models and

mockups shall be constructed as simply and inexpensively as

is compatible with the objective and use. They shall be

updated regularly to reflect the latest designs. Upon approval

by the procuring activity, scale models may be substituted for

mockups. The models and mockups shall be available for

inspection as determined by the procuring activity. Mockups
and models may be disposed of only with the approval of the

procuring activity.

6.1.16 Human Engineering in Performance and Design

Specifications—What the contractor prepares a specifica-

tion for the design, development, construction, or acquisi-

tion of a marine platform, system, piece of equipment,

facility or software, it shall conform to applicable human
engineering criteria of Practice F 1166 sod other human
engineering criteria specified by the procuring agency.

6.1.17 Equipment Procedure Plates and Manuals—The
contractor shall apply human engineering principles and

criteria to the development of procedures and manuals for

operating, maintaining, or otherwise using the system and

equipment For individual procedure pistes (for example,

lubrication charts, hazard warnings, operating instructions,

schematics), mounted at the equipment, they shall comply

with the design requirements in Practice F 1 166. For com-

puter systems, human engineering shall be applied

throughout software program piaBMPg and development

This effort shall be accomplished to ensure that the proce-

dures are concise, unambiguous, and easy to read and follow

with a coasttStnt presentation format, especially for the

hazard identification statements. The results of this effort

shall be reflected in the preparation of user-oriented opera-

tional training, and fff*tT'fH* pistes, w«n«iy md other

publication!.

6.1.18 Human Engineering Design Approach Document

01EDAD>—Two types of HEDADs shall be prepared: the

HEDADoperator (HEDAD-O) and the HEDAD-
rnaimainer (HEDAD-M).

6.1.18.1 HEDAD-O-Tbc HEDAD-0 shall describe the

as-built system or equipment (for example, console, specific

work station, compartment arrangement, lube oil system)

from an operator's perspective. The system or equipment

shall be described in detail (for example, each display or

control on a console; each pump, controller, and meter in

the robe oil system) explaining the design, layout, and

location of each component from a human engineering

perspective. The HEDAD-0 shall describe where eschcom-

pooent is located, why rt was designed the way that n appears

in the finished product, and why the as-butt arrangement

was selected (that is, the human engineering rationale). The

HEDAD-0 shall provide the procuring activity with suffi-

cient detail to evaluate the as-built system or equipment to

ensure that h is operable and complies with the human
engineering requirements contained in the system or equip-

ment design snd acquaraoo contract

6.1.Hi HEDAD-M—Tbt HEDAD-M shall be prepared

in the nunc manner and detail as the HEDADO but shall

describe the system or equipment from s maintenance

perspective. In addition to a description of each component,

such items as access openings, test or calibration points,

lubrication fittings, and other maintenance specific design

features shall be identified and discussed The HEDAD-M
shall be in sufficient detail to allow the procuring activity to

determine that the system or equipment is maintainable sod

complies with the human engineering requirements con-

tained in the design snd acquisition contract.

6.1. ISJ General Requirements—The systems or equip-

ments that will receive a HEDAD during design snd

development shall be listed in the contractor's human
engineering program plan along with a brief rationale as to

why the particular HEDADs were selected (the explanation

is required only if the contractor was allowed to select the

HEDADs). A brief discussion of the contractor's proposed

methodology for completing the HEDADs shall also be

included in bis plan. The contractor shall include drawings

(for example, console panel layouts; system arrangement;

plan, section, and devtooos for work stations), photos, or

other visual aids as necessary to assist in describing the

system or equipment.

6.1.1° Human Engineering Progress Report (HEPR)—
HEPRj shall be prepared by the contractor snd submitted on
a regular basis to the procuring activity. The reports shall be

concise, but inrntfrtcient detail to allow the procuring activity

to assess the adequacy of the contractor* human engineering

program. Information on work •ccomphshed, human engi-

neering problems encountered and solutions generated, as

well aa projected activity for the next reporting penod shall

be induced.

7. Test and Evahmtioa

7.1 Human Engineering in Test and Encnifltion—The
contractor shall estsbhsh and conduct s test snd evaluation

program toe

7.1.1 Demonstrate conformance ofmarine system, equip-

ment and facility design to human sagjaecriag dcajge

criteria,

7.1.2 Confirm compliance with overall system perform-

°lT
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arm requirements where personnel couW be a performance

determinant,

7.1.3 Secure quantitative measures of system performance

which are a function of the human interaction with equip-

ment, and

7.1.4 Determine whether undesirable design or procedural

features have been introduced, but went undetected, during

design and development The test and evaluation effort may
be required at various stages in system, subsystem, or

equipment development but these shall not preclude final

human engineering verification of the complete system. The
human engineering test and evaluation program shall in-

clude both operator and maintenance tasks as described in a

test plan approved by the procuring activity.

7.2 Planning—Human engineering testing shall be incor-

porated into the total platform, or individual system, hard-

ware, or software test and evaluation program. The test

requirements shall be satisfied through integration with the

equipment engineering acceptance tests, contractor demon-
strations, ship trials, research and development acceptance

tests, or dedicated human engineering tests using actual

hardware or mockups. Compliance with human engineering

requirements shall be tested as early as possible. Human
engineering findings from design reviews, mockup inspec-

tions, demonstration*, and other early engineering tests shall

be used in planning and conducting later tests.

7.3 Human Engineering Test Plan—A human engi-

neering teat plan (HETP) shall be prepared describing when,

bow, and who will complete the human engineering test and
evaluation program. For smaller or less complex systems, the

HETP may be submitted as part of the HEPP. If the plan is

prepared by a contractor, it shall be approved by the

procuring activity before the start of testing. The plan shall

describe the proposed test and evaluation program in suffi-

cient detail to permit the procuring activity to determine if

the test program will meet the objectives listed in 7.1. The
plan shall be prepared so that the human engineering tests

will involve individuals representative of the intended user

population, performing actual (or simulated) operational and
maintenance tasks, under actual or realistic operating envi-

ronments, and using garments and equipment appropriate to

the tasks involved in the tests. The plan shall require that all

failures occurring during test and evaluation shall be sub-

jected to a human engineering review to differentiate be-

tween failures due to equipment alone, personnel-equipment

lncompatibfljtia and those caused by personnel alone. The
contractor shall identify and notify the procuring activity of

suspected design conditions which contributed substantially

to or induced human error and shall propose appropriate

solutions to these conditioos.

7.4 Human Engineering Test Reports (HETR)—An
HETR shall be prepared for each human engineering test

conducted. It shall describe the equipment tested, the test

conditions, test subjects, test procedure*, results, and design

recommendations coming from the test results. For small or

less complex systems, the HETR may be submitted as part of

theHEPR.

8. DccuateatarJon

8.1 Data Requirements—Human engineering data re-

quirements shall be as specified by the contract. See Ap-

pendix X2.

8.1.1 Troceabihty—The contractor shall document his

human engineering efforts to provide traceabihty from the

initial identification of human engineering requirements

during analysis or system engineering, or both, through

design and development to the verification of these reqmrc-

ments during test and evaluation of approved design, soft-

ware, and procedures. Each human engineering input made
during design, construction, and test shall be recorded to

indicate that the input was included in the finished product

or rationale for exclusion.

8.1.2 Access—All data, such as plans, analyses, design

review results, drawings, rhrrklwrt, design and test notes,

and other supporting background documents reflecting

human engineering actions and decision rationale, shall be

maintained and made available at the contractor's facihoes

to the procuring activity for meetings, reviews, audits,

demonstrations, test and evaluation, and related functions.

9. Keywords

9.1 drawings; equipment; human engineering; human
engineering program; human factors; program; ships; system
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APPENDIXES

(Noanataory latfonnarJea)

XI. TAILORING GUIDE FOR PRACTICE F 133?

XI. 1 Scope

X 1 . 1 . 1 It is not expected nor desired that every human
engineering activity contained in this practice should be

completed on every marine contract. Therefore, this practice

is deliberately constructed to allow the procuring activity, (or

the contractor, if directed to do so), to choose only those

activities that will directly benefit each contract This ap-

pendix provides guidance and selection criteria to assist in

picking from all the human engineering activities described

in this practice only those that are necessary for each

contract.

XI.2 Tailoring

X 1 .2. l General—The underlying purpose for any human
engineering program on an equipment, system, or platform

design and development contract b to influence the design of

the hardware/software, not to produce paper. Lengthy

studies, unnecessary analyses, wordy progress reports, simu-

lation studies that make no direct contribution to design,

unproductive human engineering test programs, and system

analysis studies done after design is frozen are wasteful and

undesirable Thus, every human engineering activity in-

cluded in a contract must be directly oriented to maximizing

the human's contribution to the overall successful operation

of the hardware/software under design. Thai is why decisions

to include human engineering and which activities, must be

done by human engineering specialists, either at the pro-

curing activity, or within the contractor's organization.

XI .2.2 Selection Guide:

XI 22.1 General—The decision as to whether or not to

invoke this practice as a mandatory provision on design and

development contracts for marine equipments, systems, or

platforms is dependent on several factors including: (/) the

type of hardware/software (in terms of operation and main-

tenance requirements), (2) the degree to which the human is

involved in the operation or maintenance of the hardware/

software, and [3) the point in the design process when
human engineering becomes involved. Use of any, or all, of

the requirements in this practice should not normally

depend on hardware size (that is, big ship versus little ship),

system complexity, hardware duty cycles, number ofhuman
operators/maintainers involved, or, within practical hauls,

the contract type, cost, duration, or size of production lots.

These factor* may influence the kind, or number, of human
engineering activities selected for the contract, but not the

decision to include or exclude a human engineering program

in the contract

X

1

222 Specification Requirement—For most contracts,

but particularly fixed price contracts, the specification,

circular of requirements (COR), or statement of work (SOW)
shall clearly define which of the human engineering activities

from this practice shall be performed by the contractor. The
responsibility for selecting these activities must rest with the

human engineering specialists within the procuring activity.

For cost plus contracts, the contractor is sometimes given the

responsibility to define the human engineering program,

with procuring activity approval. Therefore, this tailoring

guide should be used by whomever shapes the human
engineering program.

XI.2.2J Selection Guidelines (General)—Generally,

human engineering activities from this practice should not

be included in a contract that covers parts, subassemblies, or

other small components (for example, bearings, trans-

formers, wheels). Likewise, the practice should normally not

be considered for use in hardware/software development

contracts where human involvement or interface is obviously

insignificant In contrast, if the request for proposals (RFP)

specification, or other contract documentation states perfor-

mance requirements or goals (for example, accuracy, time

limits, maximum error rates, mean time to repair) to which

the human operator/maintainer can reasonably be consid-

ered to contribute, then this practice should be employed.

X 1.2.2.4 Phases of the Acquisition Process—That are

distinct phases in the acquisition of a new platform (ship),

system, or equipment For a system or equipment these are

normally concept exploration, demonstration and valida-

tion, full scale development and production and deploy-

ment For a ship these four phases are feasibility studies,

preliminary design, contract design, and detail design and

construction.

X1.2J.5 Selection Guidelines (Particular}—A. more spe-

cific guideline for selecting particular activities from the

practice is included in Table XI. 1. The tabic shows the

human engineering activities and requirements, identified by

paragraph number and title, h also shows the four stages of

the design process commonly found in the marine design

and development world. For each intersection of design

phase and human engineering activity a letter indicates

whether the activity is normally required (/?), possibh-

completed (Pi or normally not completed (#) for that

design phase, A (—) implies that the activity discussed in the

practice is given for informational purposes only and not as a

contract requirement Table Xl.l, therefore, provides some
guidance as to where along the design and development

process each of the human engineering activities should be

applied.
.

XI .2.2.6 Evolutionary Design and Development—The use

of Table Xl.l is directed at the design and development of

new equipments, systems, or platforms. However, much of

the design effort in the marine world is devoted to improving

one particular piece of equipment or upgrading one, or a

few, compartments on a platform (for example, overhaul of a

ship engine room or conversion of a propulsion plant). It is

also common to take an existing system (for example, lube

oil, water purification, sanitary treatment) or platform (that

is, ship) and design and build a new one while using much of

T7
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114 •MO Mppu»*w<<n»i .^n»^ri» A A A H
I1J OyOaOrn Aoo>AvnoBOi Antiyo* A A A H
• 1.4 PutcOqb OtOrtOcr A A A H
• 15 FmcOon MoQKlon A A A H
1.1J lOJU^MWH SOaOCMon A A A H
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A A A H

11.7.2 mjrTMn engvwonng oyivra *™pj*i ^aapon

(TYPE 2)

M A A P
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11.13 Stuolot. Exportoionu, ond UDornory Toots M A P H
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11.16 MoqJbjbo and Modott M A P A
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11.111 Human Enp^Mrtno Oasto/i Approach
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M A A A

11.112 Human SnyptaarinQ Daatpn Approach
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M A A A

11.1* Human Gnptvartng Pvpfijraai Aapona A A A A
7.1 Human Gnphaaftop fo Taat and E^uoaor M A N A
73 Human Enp^wartnQ Teat Plan N A A A
• Oocumantaaon — — — —
11 Data "wMwHunai A A A A
11.1 TmatAy A A A A
%2 AcnaHtoQata A A A A

the old oneh a buettoe desgn. Under these drcunutincw it

is normal procedure to apply the human eafioeering activi-

ties listed in the practice to only those equipments, system*,

or platform alterations which are benj chanajed from the

baseline. As for the specific activities to be included, those

listed for detail design and construction are the most likely to

be appropriate.

Xl.2.17 Summary—Although the general and particular

guidelines provided above can be hdprul in tailoring the

human engineering requirements contained in this practice

to a specific design and development contract, they are not

foolproof. That is why it is so important to have the tailoring

done by a human engineering specialist with experience in

the marine design and construction business. No tailoring

guide can be as effective in defining a good human engi-

neering program as the academic and experiential back-

ground possessed by a human engineering specialist in the

marine world
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X2. DATA REQUIREMENTS

X2. 1 Government Data Requirements—For government X22 Commercial Data Requirements—For commernaJ

procurtraems, to which the use of a Contract Data Require- procurements, the data requirements should be included in
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Appendix D

Trip Report for College of Oceaneering

Site Visit

Los Angeles Harbor

September3, 1997
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Background On College Of Oceaneering

The College of Oceaneering was established in 1969 to train commercial "hard hat" divers From an initial

class of six students, the College of Oceaneering has grown to graduate upwards of 450 qualified, entry level

professional divers each year Over the years, the ColJege has successfully trained more than 7,000 divers to

work in the high profile offshore oil industry, as well as in the world's harbors, lakes, rivers, dams and other

inland diving jobsites (College of Oceaneering Website, httpV/diveco com/history html)

The curriculum includes training in the fundamentals of surface supplied diving and specialized training in

one of three programs, MedTeclv , SpecTeclr, or WeldTech
c

The MedTech
r
program provides training in hyperbaric medicine The SpecTech program provides

training in underwater inspection procedures The WeldTech
c
program consists of topside and underwater

burning and welding training and advanced courses in the technology of wet shielded arc welding This

program, designed for the candidate who wants to specialize in the technology of underwater wet welding,

was the primary area of interest for the site visit.

Personnel

Mr Duke Odgen. Head of Wet Welding Training, sponsored the visit Several College of Oceaneering

employees and students were observed on the training site, and four staff members were interviewed The

employees interviewed were Mr Duke Odgen, Underwater Welding Instructor, Mr Ernest Barton, Director

of Training, Mr Eric Hexdall, Diving Physics Instructor, and Mr Tom Mix, Lead Pier Diving Instructor

All personnel interviewed had at least five or more years of experience in the commercial or military diving

industries prior to assuming their positions at the College Qualitative information from discussions with the

staff members is summarized throughout this report

Objective

The primary objectives of the visit included familiarization with the commercial diving industry, on site

evaluation of the industry standard commercial diver selection and training processes, evaluation of the

school's role in placement of the new diver within the commercial diving industry, and the discussion and

observation of the role of Human and Organizational Factors (HOF) into underwater welding training and

selection

The Commercial Diving and Welding Industry

The typical career path for divers and underwater welders, according to the Oceaneering staff members

includes working for three to four different companies for five to seven years each Later in their career,

more experienced divers often transition into freelancing, working as an independent contractor where the

diver is hired on a project basis.

According to Mr Mix in most cases the industry pay scale is based on an hourly wage with depth pay,

equipment rental, and other specialty pays such as underwater welding pay or certified inspector pay For

example, a certified underwater welder may receive an hourly wage, depth pay of $1 25 per foot of sea

water (FSW) provided the depth is greater than 50 FSW, a per diem equipment rental allowance, and a

separate fee based on his qualification in welding procedures
'

The typical qualified welder - diver shift on an offshore platform may involve only four hours of actual labor

For example, when performing underwater welding at depths requiring surface decompression, the diver

would perform one radio watch for another diver's dive for twenty minutes, one dive for twenty minutes

with up to 1.5 hours of decompression, and one twenty minute rotation dressed out as the standby diver

It is important to remember that the role as an underwater welder in the rotation is normally earned through

several years of increased competency in diving and welding and intense topside labor as a tender

According to Mr. Odgen, graduates from an accredited diving school typically have at least one year as
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tender, breakout as a lead tender in one to one and one half years, and then assume the role a diver in the

rotation

Within the commercial industry, divers do not perform work on deck such as rigging and maintenance of the

topside diving station These tasks are reserved for the inexperienced tenders The relationship between

the tender and diver often uses the buddy system with each tender assigned to a specific diver As a result a

mentor - protege relationship has evolved where the experienced divers rotate the task of being assigned the

newest tender. The experienced diver informally assumes the responsibility of training this new or "green"

diver in all the tasks which much be mastered before the tender enters the rotation as a working diver A
shortage of qualified divers in the industry leads to an increased sense of urgency in training of the tenders to

become divers

During the site visit several observations where made regarding the difference between diving within the

military, the author's primary area of expertise, and the commercial diving industry The primary differences

can be found in dive team redundancy, the emphasis on personal responsibility and accountability, the

amount of formality in diving system re-entry control procedures, and the emphasis on timely production

It was noted that far fewer team members were utilized by the commercial industry in comparison to military

diving During the training phase on the welding pier, four diver - tender pairs were typically in the water at

one time under the supervision of the welding instructor For a military dive, the same four divers would

require two tenders each, four separate communications personnel, a console operator, and a diving

supervisor for a total of at least eighteen

Figure 1 - Pierside surface supplied dive station. Diver trainees conduct their first open water dives

at this location where they are first exposed to cold water, low visibility conditions.

According to discussions with Mr. Hexdall, an ex-Navy Diving Officer, the commercial diving industry

places a greater emphasis on personal responsibility of the diver than the Navy For example, more effort is

taken by authorities to find the person causing the unsafe act and penalize or dismiss that individual

responsible Conversely, the Navy's approach to accident investigation and correction tends to rely more
on identifying the procedural errors and incorporating new procedural requirements intended to make diving

"diver proof without placing blame on an individual

Another fundamental difference between commercial and Navy diving is the Navy's use of intensive,

documentable Diving System Re-Entry Control Procedures (REC's) compared to the commercial industry's

less structured approach Under the Navy system, maintenance or repair of any life support system

involving disconnecting system components requires detailed documentation, prior approval from the Naval

Sea Systems Command (NAVSEA) in Washington, and NAVSEA system completion certification In the

commercial industry there is no overall requirement for such an exhaustive documentation and approval

chain
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General Structure Of Commercial Diver Training

The overall College of Oceaneering curriculum consists of a year of training two days per week, either

Monday-Wednesday or Tuesday-Thursday The overall tuition costs approximately $ 14,000 and is covered

by government sponsored financial aid.

The program is accredited by the Western Association of Schools and Colleges It is designed to provide

divers for all areas of commercial diving, but most staff members appear to gear their training to for work in

the offshore oil industry, more specifically work in the Gulf of Mexico

When asked characterize life in the industry and the inherent stressors found there, most staff members cited

the distant location, the oil company politics, the large amount of money involved, competition among

employees, the long hours, confined living spaces, and the time away from normal life

)

Steel Barge Project

The steel barge project makes up the final part of the general diving program Prior to the steel barge phase

students learned all of the skills and procedures necessary for surface supplied diving Students receive

intensive classroom training in diving physics and diving procedures, dive rig familiarization and emergency

procedure training in the dive tanks, and practical diver tool and rigging experience through a series of pier

dives Once students have completed all of the practical exercises in operating diving rigs and equipment,

they proceed with the

steel barge project

The project is

performed by a team

comprised of the

Monday-Wednesday

class and the Tuesday-

Thursday class The

team is directed to an

empty steel barge

docked at the pier

Students are required

to properly set up the

empty barge for diving

and complete a

prescribed project

without the aid of

instructors

This phase of the

training is designed to

teach through trial and

error and to encourage

team work. Each of the two shifts is organized into a team structure consisting of several assignments:

student supervisor, lead tender, diver safety officer, and project manager

The project consists of assembling a large manifold underwater The manifold piping, approximately twelve

inches in diameter, is assembled using bolted flanges All of the large piping components for the project are

left unassembled on the floor of the harbor by the previous class

Figure 2 College of Oceaneering Steel Barge
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The project team must complete several steps in order to successfully complete this phase of training First,

the team completes a detailed bottom survey to locate and identify all of the components Next the team

devises a plan for recovery of the piping and fabrication of the manifold Once the plan is approved by the

instructor, divers begin retrieving the components and then assemble the manifold on the harbor floor After

the vessel is built to the team's satisfaction, a mandatory final survey is conducted and a formal report is

submitted to the instructor. Lastly, the instructor conducts a pressure test on the system Should the system

pass the pressure test on the first try, all members of the team receive an "A," otherwise, students rework

the system until it passes.

Two unique aspects of this portion of the diver training are the team grading and the pass down of project

status between shifts Prior to the steel barge project, all grades are awarded on an individual basis In

order to emphasize the importance of working together to complete a large project, a team grade is

employed for this phase According to the instructors interviewed, the use of this team grade results in peer

pressure motivating the less productive divers It also polarizes the organization into leaders and followers

The lessons learned by

the students from the

shift pass down are

equally interesting

Since both classes work

for the same grade,

cooperation is in

everyone's best interest

Communication skills

are honed as the result

of the information

passing down

responsibilities Shift

project managers are

given no procedural

directions for passing

down of the project

status They are free to

use any communications

they desire, e g
Figure 3 - Typical piping section found on the bottom, used in team telephone call or written

manifold assembly project.
rePort T° ven^ th*

status the first dive of

the day is always an

inspection dive

Dive System Maintenance

Diver trainees are not expected to perform maintenance on diving helmets or diver life support system

equipment Instead, maintenance of all diving equipment is performed by the maintenance shop

Maintenance is performed by the shop in order to rninimize liability problems which could possibly result

from students performing maintenance and to closely mimic the commercial diving industry where

maintenance is not normally performed by the highly paid divers.

Unlike in the industry, student divers do not own their own hats and rigs, therefore, they are not responsible

for performing maintenance on their equipment. Normally, divers purchase there own rig when they have

"broken out" from lead tender to diver The school does offer a separate Divers Supply Inc (DSI)

sponsored program for maintenance training
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Selection Requirements

Entry into the College of Oceaneering training course requires a high school diploma or equivalent

Students are also required to take a TAP test, which is a standardized test that measures math

computational skills, language skills, , spelling, and reading If a student scores below the seventh grade

level, he or she must receive mandatory peer tutoring during the class room phase of instruction

Applicants are required to take a physical exam in accordance with the ADC Consensus Standards No
pressure or oxygen testing is required for entry However, students are pressed down to 165 FSW during

training to demonstrate the narcotic effects of pressure on the diver's dexterity and mental capacity

The curriculum of the underwater welding program consists of twenty weeks of class with classes meeting

two days per week Students must first complete two basic requirements for entry into program ( 1 ) be a

qualified diver who has completed Oceaneering surface supplied dive program and (2) be surface welder

qualified on at least one shielded metal arc welding procedure, usually horizontal

A review of the underwater welding curriculum and discussions with the Mr Odgen revealed a teaching

strategy which emphasizes not only key underwater welding skills but also a broad range of personal work

habits and team oriented behaviors which are necessary for success in any job The lack of substantial prior

work experience of many of the students combined with the intense focus necessary for success in the often

highly stressful offshore oil industry necessitate the "whole person" approach taken by the underwater

welding program According to Mr Odgen the average students entering the welding portion of the

program are 2 1 or 22 years old with little "passion" for anything in life

The curriculum, designed to train the whole person, rewards hard work, quality, consistency, honesty, and

professionalism Laziness is not tolerated at any time in the twelve hours of instruction per day Students

are relentlessly pushed throughout the curriculum Students are reminded from the beginning of their

training that success as an underwater welder is achieved by mastering the art of delivering a quality weld

consistently over time The highest levels of honesty and integrity are expected by all members of the group

There is a formal chain of command among students and the instructor, and everyone is addressed by last

names

Many of the students are accomplished surface

welders prior to entry in the underwater welding

program Those prior surface welders often have a

hard time switching to underwater techniques due

to the difference between the touch required on the

surface and the touch required underwater A
small minority of the students, approximately 10 to

15%, are ex-military welders from the Navy's

Shore Intermediate Maintenance Authority (SIMA)
welding program or from the Army's Metal

Workers School According to the instructor the

Metal Workers School students tend to be some of

the best students.

All students are required to leam topside arc

welding prior to beginning the underwater portion

of the class because according to the instructor,

"You can't learn to weld underwater, you must

learn topside first
" For those students with no

prior welding training, the school has developed a

relationship with a local vocational school to teach

the topside portion Students must qualify in at

least one surface procedure, a horizontal

procedure, prior to beginning the underwater

portion

Figure 4 - Tender monitoring communications

with underwater welding student.
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Completion of the course includes 75-80 hours actually welding underwater Much of the remaining

instruction time is spent preparing to weld According to Mr Odgen, "Underwater welding is 95%
preparation, 5% welding

"

Most students have qualified several procedures by the time they finish the curriculum Qualification

consists of performing welds underwater which exceed the AWS D3b specifications as well as meet the even

tougher constraints imposed by Mr Odgen Upon completion of their welds, students bring the coupons to

the surface where they are inspected by Mr Odgen, a certified welding inspector (CW1) To avoid a conflict

of interest, those coupons which are deemed acceptable by Mr Odgen are taken to an unbiased CW1 outside

of the training organization for final certification.

The underwater welding staff recognizes that the underwater welding portion of the training only produces

"coupon welders" who are not prepared to perform the rigorous, highly varied wet welds encountered in the

commercial diving industry To supplement the development of the student's underwater welding skills, the

curriculum includes performance of topside metal working projects designed to promote team building,

enhance project management skills, and, in general, impose additional demands on the student, thus

improving time and stress management The topside projects involve the fabrication of practical metal

working projects needed by the College or other local businesses The projects usually require several

weeks for completion and involve work from many students in both the Monday-Wednesday and Tuesday-

Thursday class rotations As a result, students learn to properly allocate resources, manage time, and most

importantly, to properly stage unfinished projects for the subsequent shift to assume the work The latter

skill is particularly valuable in the shift work oriented offshore oil industry

The work projects ongoing at the time of field visit included fabrication of the following steel structures

• a submarine lifting device

• an offshore frame for a Hobart Welder

• a mobile dive control shack

• a riser clamp for a portable Deck Decompression Chamber for chamber

Through these types of

welding intensive, multiple

person, topside projects

Mr Odgen builds cohesive

teams and pride in

accomplishing useful

projects

In addition to

incorporating an emphasis

on the importance of

teamwork, the underwater

welding curriculum also

imposes a great deal of

stress on students in

attempt to simulate the

living and working

environment encountered

within the underwater

welding industry.

The students' daily

schedule involves a twelve

hour work day which

typically includes reporting

for work promptly at 5:30 A.M., welding-diving station setup until 6:00 A M., work on topside projects

from 6:00 - 8:00 A M , underwater welding from 8:00 - 2:00 P.M., more topside projects from 2:00 - 4:30

P. M , and station breakdown and clean up until 5:00 P M. According to discussions with the instructor.

Figure 5 - Student welder-diver working on topside welding project.
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this stressful curriculum keeps students busy The rigorous workday is intended to force multi - tasking and

promote an intense focus

An additional level of stress is placed on the students through the instructor's teaching style Mr Odgen

admittedly uses fear as a motivator, and from all observations, his approach is effective Students are

expected to perform their assigned tasks and work together as a team or face the consequence of answering

to the instructor, a burly ex-Navy Seal and commercial underwater welder of many years

. ] l| f\ IV According to the underwater welding staff, the stress level

I **
|\fl ^^^ imposed on the students during training keeps graduates from

^ -^ the College in high demand because the long days and hard

Bl V KH work prepare them for tremendous stress which they will later

I^^SHm Vw' encounter in their work offshore By all accounts, life offshore

is much more stressful, too stressful, in fact, to be simulated at

the College

According to instructors, graduates are usually sent off to their

first job interview in Louisiana or Texas For many of them the

farthest distance they have ever traveled in their lives When
they arrive at their destination, they are nervous about the

interview, and they are alone in a strange new place

Furthermore, managers often assume that "the new guys know

a lot more than they really do know" according to Mr Odgen

After getting the job, the new employees are sent offshore as

tenders They face many new stressors within the industry such

as drug testing and the potential consequences of missing the

crew boat According to one estimate all of this stress

combined with the inherent stress of underwater welding leads

to 70% of all new welder-divers quitting within 90 days

Figure 6 - Knifeswitch mounted

topside, opened by tender on welder

diver's command or in case of

emergency.

Industry

Placement of Students in The Offshore Diving

According to school officials approximately 95% of the hundreds of newly trained divers hired annually by

diving companies in the Gulf ofMexico (GOM) are from the five Association of Commercial Diving

Educators (ACDE) accredited schools There is, however, a recurring shortage of qualified divers in the

GOM
The College of Oceaneering sends roughly 60 welder-divers to the GOM per year with the majority of them

going to work for Caldive or Oceaneering Of those going to work in the GOM often as little as ten

percent or less stay for more than a few months.

Placement of welder-divers is usually arranged by the welding instructor based on the presumed fit between

the company's culture and welder-diver's personality The international nature of the offshore industry

forces employees to work with people ofmany different cultures The instructor's prior working

knowledge of the companies can ensure a higher probability of a student's success in the industry For

example, a less self-confident welder-diver would not be well suited to work for a large international diving

company with a hierarchical structure By placing this welder-diver in a smaller family run company there

would be a better fit.

Human And Organizational Factors

When asked to elaborate on his vision ofthe role ofHOF in underwater welding selection of team members

with skills for job, Mr Odgen identified the following four key issues

1 . Design engineers rarely consider human factors during the design of procedures for wet weld repairs to

structures
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2. Human factors are often more important considerations in wet welding than in hyperbaric welding

because of the greater variability in wet weld designs than in hyperbaric weld designs

3. Quality of welds is the aspect of underwater welding with the greatest potential for improvement

through greater consideration ofHOF
4. In the commercial diving industry, productivity is routinely measured in bottom time Since bottom

time is solely a function of human factors, specifically the diver's susceptibility to decompression

sickness, diving is one of the few construction specialties in which HOF are directly proportional to

productivity

Safety In Wet Welding

According to Mr Barton, the College's Director of Training, an estimated 75% of all underwater welding

accidents which occur are basic industrial safety accidents, injuries common to all industrial and construction

environments (i e tripping, falling objects, etc ) Approximately 15% of the underwater welding accidents

involve diving safety issues such as barotrauma arterial gas embolism (AGE), and decompression sickness

According to Mr. Barton's estimate, the remaining 10% of underwater welding accidents are the result of

conditions unique to underwater welding such as injuries caused by the welding electrode and the ignition of

flammable gases caused by the intense heat

According to discussions with Mr Odgen, a well trained, well supervised group of welder-divers is not at a

high risk for serious accidents Based on his years of experience, electrocution does not occur as a result of

contact with the welding electrode For example, provided that the welder actually touches the electrode to

the metal portion of the diving helmet, the shock would provide a stunning jolt to the diver perhaps

knocking the welder-diver over, but the force would not kill or cause serious injury This statement

appeared to contradict his earlier reference during student instruction to the "killing zone," the area from the

neck to top of head where the electrode is normally positioned during wet welding It is believed that this

reference is used to emphasize potential for a serious, if not life threatening, jolt

Mr Odgen also stated that there are few incidents of burns caused by passing the welding arc across a

diver's appendage According to Mr Odgen the greatest risks occur due to wave surge during welding in

the splash zone

As a result of the observations and informal discussions conducted during the tour of the College of

Oceaneering, many insights were made regarding the general training and selection processes involved

within the wet welding and commercial diving industry Specifically, the visit reinforced the author's

understanding of the roles that stress, teamwork, and company culture play in wet welding The intense

pressures associated with life in the offshore industry increase the need for the study of stress and

performance in diving The importance of teamwork within the industry is rooted in the preparation phase

of underwater welding Since preparation for wet welding requires such an intense effort by the entire team

it makes sense that an understanding of team dynamics is a key to the success of wet welding Instructors at

the College continually identified the corporate culture differences among the various diving companies that

make up the industry Understanding the role of these cultures and the role of the individual diver within

them is a key element in ensuring the success of wet welding operations
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Appendix E

Trip Report

for

Global Divers and Contractors, Inc.

Site Visit

New Iberia, Louisiana
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Background On Global Divers and Contractors, Inc.

Global Divers and Contractors, Incorporated is a wholly owned subsidiary of Global Industries, Ltd which

specializes in deepwater diving, saturation diving systems, underwater welding technology, subsea

completions, and nuclear power plant diving Global has over twenty-five years of experience as a diving

contractor Global' s accomplishments include their deepest working dive of 1075 fsw in the Gulf of

Mexico, underwater wet welding procedures qualified to 325 fsw, and hyperbaric dry welding procedures

qualified to 680 fsw.

Personnel

Dr. S "Jim" Ibarra, a Metallurgy/Weld Consultant for Amoco Corporation's Worldwide Engineering and

Construction Division funded the visit, and Mr C E "Whitey" Grubbs, Global's Director of Underwater

Welding Research and Development sponsored the visit Mr Grubbs provided a tour of the diving and

underwater welding facilities and an extensive history

of the underwater welding industry, narrative and

pictorial histories of his experiences in the application

of underwater welding in offshore repairs He also

discussed the current state of the art of underwater

welding procedures, and provided unique personal

insight into underwater welding operations While a

field excursion to observe underwater welding

operations in the Gulf had been tentatively scheduled.

Global's operational commitments, and transportation

restrictions curtailed the evolution

Objective

The primary objectives of the visit included

familiarization with the commercial diving and

underwater welding industry, on site evaluation of

industry standard commercial underwater welding

processes, and the collection of information regarding

of the role of Human and Organizational Factors

(HOF) in underwater welding operations

Design of Underwater Wet Welding

•» *,

Figure 7 - Mr. "Whitey" Grubbs, Director of

Underwater W elding Research, in Global's

diving yard.

Repairs

Mr Grubbs has amassed an impressive collection of photographs, drawings, and project completion reports

which he utilizes as tools for marketing Global's underwater welding services and promoting underwater

welding as a viable method for joining steel structures underwater A review ofMr Grubbs' volumes of

underwater photographs of underwater welding projects provided a unique perspective of the ingenuity and

creativity required in the design and performance of underwater welding of steel structures The majority of

underwater welding operations presented by Mr Grubbs involved repairs to existing offshore structures

1 1<
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The projects which were presented included repairs to a wide array of different structural configurations at

varying depths As a result of the variations in depth and configuration parameters every underwater

welding repair tends to be unique Diving system depth constraints and the required bottom times at given

depths are considered to determine the most efficient underwater welding method for the given task The

configuration of the structural member must be considered due to the spatial restraints placed on the welder

and the requirements to construct a weld chamber in the case of dry welding decision to remove and do

work topside vs at depth

The underwater welding repair process involves sending trained inspectors down to assess damage to

platforms Repair procedures are then

designed based on the inspector's detailed

report and drawings

, Based on conversations with Mr Grubbs

a slight majority of the work done by

Global is in support of Global' s Pipeline

Services, therefore, they perform many

habitat welds on pipelines. Though

habitat design for pipelines is not as

complex as habitat design for complicated

structural nodes, pipeline connections

which involve vertical risers can be quite

tricky Mr Grubbs pointed out several

habitats configured for pipeline

connections which are currently being

stored in Global's yard Early models of

Figure 8 - Global pipe barge. such habitats were very noisy due to flow

noise from the ventilation system Now,

specially designed air diffusers

are used to decrease the noise

and, consequently, decrease

the stress on the welder-diver

There are numerous load

calculations required during

the design of repair procedures

to different structural

members During Global

Divers' repair of the trunkline

gas T-23 structure, the

decision to remove and replace

an entire node using wet

welding required extensive

load calculations

.

One of the most interesting design

eterrerte presented by Mr. C>ubbswas the use ofas
effort to rmmce overhead wefcing The siigle scalop design provides the same weld cornedkxi leng^ but eiminates the

risk of a weakened connections resulting from the use of the physicalyoornpicated overhead wettrg

Figure 9 - Mac II, one of Global's many pipelay barges.
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Figure 10 - Test chamber in Global 's underwater welding

testing facility

fabrication, and transportation of welding rods are key element

the rights to several welding rod designs Rod testing is one

of the key functions performed at Globals research facility

Prior to testing welding rod performance, the rods are

pressure tested using a small hyperbaric chamber specifically

designed for the purpose of testing pressure effects on the

rod Another innovation utilized by Global is a specially

designed pressure lock used to pressurize the rod in a dry

environment in order to compress voids in the rod coatings

which could absorb water if pressurized in a wet environment

Human And Organizational Factors

When asked to elaborate on his vision of the role ofHOF in

underwater welding selection of team with skills for job, Mr
Grubbs identified the following key issues

Individuals - selection and training
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Welding research

Global divers has an extensive concentration

in underwater welding research The

company claims to operate the only

commercial hyperbaric welding facility

dedicated to research and development of

underwater welding Mr Grubbs acts as the

director of underwater welding research

His experience in the industry includes

membership on the AWS committee since its

inception and co-authorship of the Welding

Handbook's section on Underwater

Welding
2

Additionally, Mr Grubbs holds

three patents on underwater welding

procedures

Currently Global is involved with a joint

industry project to develop welding

electrodes with Mobile Oil, and the

Colorado School of Mines

Much of Global' s research work involves

testing welding rods and qualifying of

underwater welding procedures to conform

with the D3B specifications The design,

s in the success of wet welding Global owns

Figure 1 1 - Pressure lock for

compressing welding rod for use in

wet pot.

One ofMr Grubbs' most intriguing anecdotes involved his successful deployment of non-divers,

construction welders, as underwater welders performing hyperbaric welding procedures Surprisingly, these

welders who were specialized surface tank welders had little or no trouble adjusting to welding underwater

They did however have difficulty re-adjusting to surface welding following the completion of their

underwater welding

2
American Welding Society, Welding Handbook, Volume 3 - Materials and Applications, Eighth

Edition, edited by William Oates, 1996 Miami
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Contractual relationships

Global has a fleet of 35 manned vessels which includes diving support vessels, lift boats, derrick and

pipelaying barges As mentioned earlier much of Global divers work is in support of Global Industries pipe

laying barges

This arrangement of divers working in support of their own company's projects provides an interesting

contractual contrast to most diving contractors who tend to work as subcontractors for other firms While it

is difficult to determine which type of contractual arrangement provides the greatest benefit to dive safety, it

does provide and area requiring further HOF study

Equipment - individual interface

Other equipment considerations demonstrated during the visit include the use of a rectifier for conversion of

DC power for welding, a muck strainer for wet welding in extremely low visibility areas, and lessons learned

involving procedures for operating hot water suits

The use of an AC rectifier to produce DC current from an AC source is much quieter than traditional direct

DC generators Ideally such a rectifier could be plugged directly into existing AC power sources, but

welding machines require a very steady source of power not always available from AC outlets Usually, the

power source is therefore provided by an AC generator and routed through the rectifier for use by the

welding machine

The muck strainer is a device first developed for use in welding repairs to a sheet pile wall in an area of

extremely low visibility This device which was patented as part of an underwater welding procedure is

simply a vessel containing clean water with Plexiglas ends through which a welder-diver can peer through to

see weld A similar design was applied to an underwater video camera

The use of hot water suits was discussed at great length Hot water suits tend to scald divers because the

temperature of the hot water supplied is often readjusted during the duration of the dive as the diver gets

progressively colder, but the numbing effects of the cold water prevent the diver from realizing that his skjn

is being scalded near the inlet source of the hot water The hot water should therefore be set initially an

maintained throughout the duration of the dive in order to prevent burning the diver

Conclusion

The visit to Global provided perspective on the role which industry research and structural design play in the

underwater welding industry There is a great potential for incorporating HOF concepts in both of these

areas For example. HOF must be simulated in qualifying procedures and divers

From an HOF aspect, the most useful qualitative data which came from the visit involved the role of

contractual relationships in underwater welding safety, the ability of qualified surface welders to adjust to

hyperbaric habitat welding, and the importance of the human-equipment interface as demonstrated by the

discussion of the hot water suit and the visibly improvement devices
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Top: Welding habitat for pipeline connections

Bottom Inside view of habitat showing air inlet
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Appendix F - Trip Report for Oceaneering International, Inc. Diving

Division

Trip Report

for

Oceaneering International, Inc. Diving Division

Site Visit

IAYOU VIST*

Morgan City, Louisiana

October 11, 1997
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Background On Oceaneering International , Inc.

The diving division of Oceaneering International specializes in the deployment of remotely operated vehicles

(ROV), air, mixed gas, and saturation diving Using these diving modes they support a wide range of

underwater operations including underwater wet and hyperbaric welding

An understanding of Oceaneering' s operations was derived based on the observations during the visit and

discussions with employees The company is highly service oriented as a result of performing substantial

outsourced work for large companies In contrast to Global Industries, less of Oceaneering' s diving is

performed in support of Oceaneering' s own operations than in support of other construction and

maintenance activities Though it began as a diving contractor, Oceaneering no longer simply considers

itself as simply in the diving business but rather in the hazardous environment delivery business In other

words, the company has branched into many aspects of engineering including ROV's, one atmosphere suits,

and even space systems

Oceaneering's Headquarters office is in Houston In addition to the regional headquarters located in

Louisiana, the company also has regional headquarters in Maryland, Scotland, and Singapore and operations

in over fifty locations worldwide

Interestingly, a large portion of Oceaneering's contracts are with the Navy These contracts include support

services for the Navy's underwater welding program and ROV programs While most of the government

contracts are managed out of the Upper Marlboro, MD office, testing of welding procedures, and the

training of the ROV operators occur at Oceaneering's facility in Morgan City

Objective

The primary objectives of the visit included familiarization with the commercial diving and underwater

welding industry, on site evaluation of industry standard commercial underwater welding processes, and the

discussion and observation of the role of Human and Organizational Factors (HOF) in underwater welding

operations Specifically the discussion ofHOF in underwater welding was focused on the underwater

welding repair process, welding safety, diving contractor organizational factors, and example underwater

welding repair projects

The visit included a tour of Oceaneering's ROV production facilities, a tour of the underwater welding

facilities, a tour of the diving support facility, a brief on Oceaneering's most recently completed underwater

welding project, and observations of wet and dry welding procedures in the land based hyperbaric facility

Personnel

Once again Dr S "Jim"' Ibarra, a Metallurgy/Weld Consultant for Amoco Corporation's Worldwide

Engineering and Construction Division funded the visit The visit was sponsored by Mr Jack Couch,

Manager of Diving Operations

ROV Manufacturing and Operation

Oceaneering's ROV manufacturing facility and underwater welding facility are housed together in Morgan

City with the diving support facility located across town at a separate office and warehouse complex

Though not directly related to underwater welding, the tour of the ROV manufacturing and support facility

was quite interesting Oceaneering manufactures five models based on the same design The primary

differentiating feature among the five models is the power available for propulsion The company operated

ROV's for many years and entered the ROV manufacturing business after discovering that the ROV's which

they purchased and operated were difficult to repair due to the lack of available parts To alleviate this

problem they began manufacturing their own models with all five models built on a similar frame using a

majority of interchangeable parts

To date all ROV's have been manufactured for Oceaneering's own use, although the company is currently

working on the delivery of its first unit for sale It is under contract to the U S. Navy to provide an ROV
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and training for Navy personnel to operate and maintain the vehicle The maintenance training includes

electronics and hydraulics modules and is conducted at the facility in Morgan City

Each ROV has two robotic arms equipped with interchangeable tools and a separate torque devise capable

of supporting most required socket sets The vehicle is controlled from inside a fly away control console

operated by two people, one navigator and one operator

A key feature in Oceaneering's ROV operations is their ability to react quickly in the event of a lost ROV
If a vehicle is lost, a new unit can be flown in within one day and be immediately connected to same tether

This quick response minimizes delays to Oceaneering customers

In addition to ROV operations, Oceaneering also possesses one atmosphere suit capabilities According to

Couch certain activities, such as repairing a series of riser clamps at various depths, are ideal for the one

atmosphere suit By combining surface supplied air and gas diving in shallow water, saturation diving upto

1000 fsw, deepwater ROV's, and the one atmosphere suit, Oceaneering is capable of supporting operations

at all possible depths

Underwater Welding Facilities

Oceaneering's underwater welding tank operations are adjacent to the ROV facility The welding tank

supports both wet and dry underwater welding The facility is structured such that wet and dry operations

can be conducted simultaneously in two adjacent compartments The facility is designed to require dry

welders to enter the welding habitat by first passing through the water column Once in the habitat, the

welder can then prepare for and perform the weld This arrangement simulates the conditions in the field

and, thus, familiarizes the diver with the process of diving to the habitat, entering the habitat, dewatenng the

habitat, and changing into a lightweight life support mask.

During my visit, several of Oceaneering's welder-divers were qualifying the Navy's newest procedures

found in Navy Ship's Technical Manual (NSTM) Chapter 074 The Navy jointly developed these

procedures with the assistance of Oceaneering The procedures are loosely based on the AWS D3b
specifications

Oceaneering Diving Operations

Approximately 70% of Oceaneering's operations occur in the wanner summer season and the remaining 30

% is done in the winter Additionally, all of the equipment such as the compressors, the fly away diving

systems, and the welding habitats are overhauled during the winter.

Roughly 40% of Oceaneering's dives used mixed gas due to additional bottom time it affords This includes

many relatively shallow dives which could be performed using air

Oceaneering has had no confirmed incidences of decompression sickness (DCS) in 2 years, however,

roughly six or seven chamber treatments have been performed in an effort safeguard against mistaking other

injuries as DCS Couch pointed out that there is a substantial variance among the dive tables used by

different diving companies As a result different companies have distinct dive safety cultures and

reputations For this reason the transition of divers from one company to another is often undesirable to

both the divers and management

Underwater Weld Repair Process

The majority of underwater welding is installation of pipelines or structural repair work The first step in the

structural repair process is to conduct a survey of the damage to the structure According to Couch oil

companies typically hire a diving company to do the survey and assist with the welding design After

deterring the project scope and the detailed repair design a bid package is advertised and the project is

typically awarded to the lowest bidder provided it is a qualified diving contractor

In some instances urgency of the repairs necessitates the use of one diving contractor for all phases of the

welding repairs, inspection, design, and construction During the visit to Oceaneering's diving office, the

staff presented walked me through a pictorial history of a rush underwater weld repair which was completed

in the Fall of 97 The project was completed under a time and materials contract with a firm completion
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deadline A damaged shallow water offshore rig had repaired using combination of dry welds, wet welds,

grouting techniques The job involved the replacement of several members carrying heavy loads and

therefore required transfer of the loads to temporary braces during welding repairs on the structural

members This job demonstrated the organic nature of underwater weld repairs Each repair is different so

the optimal repair design requires creative thinking

Another project performed by Oceaneering was the recovery of steel marine structure which turned over and

sank in place The cave in problems caused by the soft soil in the area of the sinking prevented digging out

the structure so a giant cofferdam had to be designed to fit around the entire structure The cofferdam was

designed and fabricated to be self-jetting so it could embed itself down below the mudline to prevent cave in

Welding Safety

Several wet and dry welding safety issues were discussed including the risk and hazards of electrical shock,

underwater explosions, and respiratory issues in underwater welding While shock is a concern of

underwater welders is quite often shrugged off as an inconvenience but not a major threat to the welder-

diver

Death as result of shock is not often viewed as a major concern Explosions are of great concern due to the

potential build up of explosive gases in enclosed spaces at working depths

A large amount of discussion was focused on the industries use of life support and redundant air supplies

Oceaneering enforces mandatory use of AGA, a full face breathing apparatus, in all welding habitats Some
studies suggest that the AGA rig is safer because of its greater capacity of air volume flow Other

companies in the industry use only a mouth and nose bib which tends to result in larger amounts of soot

being deposited in the mouth and nose of the diver The mouth and nose bib is often preferred because it

provides the welder with a larger field of vision for welding Couch cites one instance where one of

Oceaneering' s top surface welders was unable to perform in the habitat because of the he couldn't see in

AGA In this instance the simple solution was to bring the welder to the surface in order to familiarize him

with welding in AGA without the added constraints of welding under pressure The approach seemed to

work

One interesting narrative experience was relayed which exemplified both the need for the need for stronger

safety requirements within the underwater welding industry and the level of inadequate welder-diver air

sources The episode involved a small Florida Company which was hired to perform an underwater

inspection on a pipeline After the inspectors found damage, they told the pipeline owner that they were

qualified to do weld repairs After building and installing a habitat which leaked extensively, they sent a

welder down in the chamber to weld without a direct air source Instead of using an AGA rig or even a

mouth and nose bib, he breathed the ambient air pumped in to ventilate the habitat Unfortunately this air

flow was supplied by undersized compressors and the welder quickly became exhausted As a result when
the welder became incapacitated he would come to the surface, where he laid on the barge breathing 1 00° o

oxygen Once he began to feel better, he would return to the chamber and repeat the process

Unfamiliar with underwater welding, the pipeline owner hired Oceaneering inspect the pipeline repairs as a

3
r

party, unbiased inspector When the Oceaneering team arrived and saw the operating conditions, the

company refused to get involved with the project due to their potential liability for allowing such dangerous

practices to continue.

When Oceaneering representatives questioned the company representatives about the qualification of their

procedures, they said the procedure was qualified to 33 fsw under D3b It was later learned that the

procedure had been done in a work shop, with only the welder's hands and the weld material in a box The

diver had not been placed under pressure

The small company continued to work inefficiently for about a month without completing the job, and

Oceaneering was eventually called back to finish the job

Another somewhat controversial safety precaution among welder-divers is the mandatory use of a come

home bottle, a small cylinder worn strapped to the back which acts as the redundant air source According

to Couch many companies don't require its use particularly in the habitat Furthermore, most welder-divers

feel the come home bottle's bulk is uncomfortable and would prefer not to wear it Mr Couch believes that

the come home bottle is one example of why some safety decisions should not be left up to the field level
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workers Given there preference, most would not wear the come home bottle in spite of numerous real

world examples of incidents where a come home bottle would have saved the diver's life He cited a recent

example of a case in Lake Charles where a young diver diving below a casino boat was welding and cut his

air hose Because of the shallow depth of less than fifteen feet, he had chosen not to where a come home

bottle After cutting his hose, he panicked became disoriented Instead of swimming a short distance

athwartships to safety, he attempted a free ascent by swimming the length of boat and drowned

Organizational Factors

The majority of Oceaneering's diving contracts are directly with the large oil companies Shell is the diving

group's biggest customer In addition to these large diving projects, Oceaneering does many smaller jobs

Small dive boats are deployed fully equipped to perform multiple short duration jobs at one outing

Oceaneering's safety organization consists of several safety officers within the company The diving group

has a dedicated dive safety officer The diving safety officer usually works his way up the ranks from diver to

diving supervisor to safety officer Extensive diving medicine experience is preferred Additionally, a

former diving safety officer currently holds the position of the company's overall safety officer, responsible

for the entire company's safety program Though not required, the company safety officer has traditionally

been an ex-diving safety officer due to large amount of diving operations Oceaneering performs

Oceaneering's safety reporting procedures involve only in house safety reporting According to Couch it is

often difficult to acquire an accurate details of accidents from operations grapevine Operators tend not to

give the realistic safety story because of marketing concerns There is a close network among safety officers

in which detailed lessons learned are shared Normally these lessons learned are relayed to welder-divers

through pre-dive informal discussions of previous industry accidents occurring in similar situations

Couch described an earlier failed attempt by Exxon to stipulate that accurate safety performance data to be

supplied as a contract requirement All of the major diving companies refused on the grounds that the diving

companies were responsible for paving the diving insurance premiums, and assuming these risks gave them

the right to withhold safety performance information

Sources of Welder-Divers

Oceaneering's divers come from a wide variety of civilian and military training sources According to Couch

there are many substantial differences among these sources Civilian programs tend to vary in price, quality

of training, duration, the expectations of their graduates Similarly military programs are an excellent source

of divers but often military divers have trouble adjusting to cultural differences in the commercial industry

The tremendous shortage of qualified divers in the industry necessitates that most graduates of reputable

diving schools are accepted when they apply for jobs at Oceaneering Retention of these divers can be

difficult and tends to differentiate the dive schools While couch recognized Santa Barbara City College,

The College of Oceaneering, and Ocean Incorporated as the schools providing the most technically

proficient divers, he also noted that they were unreliable as sources of dives who will make it in the Gulf

Quite often divers from these sources tend to leave due to the rural living conditions found in the Gulf Coast

states On the other hand, graduates of Young Memorial, a small local Louisiana dive school are not

shocked with living conditions in Louisiana so they tend to be a better investment for the company Couch

estimates that as few as few as 10-15% of graduates of the Santa Barbara City College program remain in

the Gulf while the majority of the Young Memorial students stay

The Young Memorial School was started by several local diving companies who donated equipment and

instructors in an effort to alleviate the shortage of qualified divers As a consequence of this retention

phenomenon. Couch does not believe the high cost of accredited dive schools is worth the money It is

better to spend less money on a school which will qualify a diver in 1 20 days than to complete an expensive

year long program

Ex-military divers comprise a large portion of Oceaneering's divers Usually they are very successful, often

breaking out as divers sooner than others Many breakout in as quick as 6 months The younger military

divers are preferred because of their willingness to adjust to the commercial diving culture and procedures
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If they left the Navy as more senior divers they often have an uncompromising attitude and are not receptive

to learning the ways of the offshore oil industry There is a lot they need to learn about oil ngs

Surprisingly many new employees claim they are underwater welders but are unable to weld on the surface

According to Couch to be a successful underwater welder you must first be a good surface welder

Welder-Diver Traits

According to Mr Couch, there are several innate traits which a successful welder-diver possesses When

asked to elaborate on his vision of the role ofHOF in the selection of individuals with the skills required for

underwater welding, Mr Couch identified the following key issues:

• Good mechanical skills are necessary Welder-divers must be able to think mechanically, but more

importantly they must be able operate efficiently Couch claims that he can identify potentially effective

divers by simply watching them with a crescent wrench If they appear at ease with such tools they will

be effective underwater as well

• A reasonable level of intelligence and forma] education is desired but by no means a requirement for a

welder-diver Not surprisingly, better educated candidates tend to have less refined mechanic skills

The education tends to be more useful in project management areas Several exceptions were noted

including Dave Rosenberg, a young diver who is both a good mechanic and engineer He is currently

working on his welder qualifications in an attempt to better understand operational constraints which

should be applied to design

• Ambidexterity is preferred Mechanical skill, dexterity, is essential in underwater operations

Consequently, being able to work equally well with both hands is ideal According to Couch, truly

ambidextrous welder-divers are most desirable, followed by right handed welder-diver, and finally, left

handed welder-divers

• Confidence in welding skills is also an important trait of an effective welder-diver New welders tend

to waste time grinding and rewelding already adequate welds It is important to complete a quality

weld, but often time is wasted making the weld look perfect Such actions are very inefficient and

expensive

• Two interesting physiological traits were mentioned, electrical shock resistance and heart physiology

According to Couch, an individual's ability to detect electrical shock varies from person to person

Also Couch mentioned a congenital heart condition which is undetectable, may exist in as many as one

fifth of all people, and may be hazardous for individuals employed as divers The condition consists of a

small hole in the heart where the infants umbilical cord was connected prior to birth, which fails to heal

after birth This condition can lead to a propensity for hyperbaric injury

• In saturation diving the effects of Helium on the temperatures of the divers requires a limited tolerance

for variation in temperatures Due to the cooling effects of helium a change of as little as 1 5 degrees

can result in a dramatic loss in body temperature and effectively render divers useless

• The duration of time offshore was cited as a major issue in performance for many welder-divers

Oceaneering*s longer projects can require welder-divers to remain deployed for up to three months

This results in many family problems, and, consequently, poorer job performance

• Saturation diving is one area where human factors are of primary concern The severe pressures

encountered cause bodily fluids to be forced out ofjoints resulting in loss ofjoint lubrication and

reduced mobility All tasks must be designed to account for these mobility reductions
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Conclusion

As a result of the observations and informal discussions conducted during the tour of Oceaneering Inc .,

many insights were made regarding the operational processes involved wet and dry underwater welding and

the commercial diving industry in general Specifically, the visit provided valuable insight into the specific

types of underwater welding repairs being performed in the gulf, the organizational and contractual

relationships between diving companies and their customers, the dominant perceptions of safety within the

underwater welding industry, and the criteria used for the selection of welder-divers
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Top Weld coupon used for testing of new U.S. Navy underwater welding procedures

Bottom: Jack Couch, Oceaneering Diving Operations Manager discusses procedure with underwater

welder
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Top: Oceaneering's custom built large, cylindrical cofferdam.

Bottom: Practice underwater welding tank with scrap platform node in foreground
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Appendix G - Interfaces
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Appendix H - Electrical Fragility Analysis Calculations
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Capacity of the human heart to survive electrical current.

Assume variation of 40% for the amount of current necessary to cause irreversible ventricular

fibrillation effect from 3-second shock. Assume lognormal distribution of current
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Now assume an AC source is used such as a video camera with a 120 volt, 60Hz power source

The maximimum current which can be withstood by the human body drops to .1 amps. Assuming
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Appendix I - HOF Applications Model Assumptions
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Individual Operators - Welder/Divers BASELINE 3«e%

Medical Examination Standards X 10% decrease in fragility 2 94%

Physical Fitness X 10% decrease in fragility 2 94%

Dexterity Measurement X X X 1E10% decrease in error rate 10% increase in correction and detection 37%

Age limits X 10% decrease in fragility 2 94%

Gender X 5% decrease in fragility 321%

Diet X NOT TESTED 28%

Panic and stress screening X X X 10% decrease in error rate 50% increase in detection detection and correction 26%

Capacrty Measurement X NOT TESTED NA

Aptitude Testing X X X 20% decrease in error rate 10% increase in detection and correction 2 70%

Education X X NOT TESTED NA

Entry Level Diving Training X X NOT TESTED NA

Entry Level Welding Training X X X E10 decrease in error rate, 25% increase in correction and detection 35%

Team Preparation Training X X 25% increase in detection and correction 327%

Panic and high stress Training X X 50% increase in detection and correction 262%

Leadership X X 10% increase in detection and correction 3 45%

Decision Makmg/Cnsis Management X X 10% increase in detection and correction 3 45%

Conflict Resolution X X 10% increase in detection and correction 3 45%

Individual Limitations Training X
In-House Training Program X X NOT TESTED NA

Communications Training X X X £10 decrease in error rate 10% increase in correction and detection 37%

Expenence X X X 50% decrease m error rate 50% increase in correction and detection 1 32%

Incentives X
Operating Teams

Process Auditing X Assume perfect positive correlation of errors within each subtask 222%

Focus on Reliability X Assume perfect positive correlation of errors within each subtask 222%

Focus On Teamwork X Assume perfect positive correlation of errors within each subtask 2.22%

Effective Crew Resource Management (CRM) X X X X 10% decrease in error rate 50% increase in fragility correction and detection 2 22%

Risk Perception X Assume perfect positive correlation of errors within each subtask 222%

Job Hazard Analysis (JHA) X NOT TESTED NA

Emergency Preparedness X X 50% increase m correction and detection 2 62%

Command and Control X 50% increase in correction and detection 262%

Frequency of Training X X X E10 decrease in error rate 50% increase in correction and detection 26%

Dive Team Briefing X X X 50% decrease in error rate 10% increase in correction and detection 74%

Two-Way Voice Communications X X 50% increase in correction and detection 262%

Team Requisite Variety X X 25% increase m correction and detection 3 27%

Incentives Assume perfect positive correlation of errors within each subtask 222%

Rest X Assume perfect positive correlation of errors within each subtask 50% decrease in er ror rate 1 12%

Corporate Administrative Organization

High Reliability Organization X NOT TESTED NA

Adaptive organizational structure X NOT TESTED NA

Command and Control X NOT TESTED NA

Levels Of Authority X NOT TESTED NA

Accurate decision making X NOT TESTED NA

Flexibility within formal rules X X NOT TESTED NA

Communication X X NOT TESTED NA

Appropriate Checks and Balances X NOT TESTED NA

Level of Interdependence X NOT TESTED NA

Organizational Culture X X NOT TESTED NA

Empnasis On Safety And Reliability X X NOT TESTED NA

Support of Training Goals X NOT TESTED NA

Linking of Accountability with Control Systems X X NOT TESTED NA

Process Audrting X NOT TESTED NA

Management rules and regulations X X NOT TESTED NA

Work schedules X NOT TESTED NA

Divers Personal Log Book X NOT TESTED NA

Drving Company Log Book X NOT TESTED NA

Chamber Log Book X NOT TESTED NA

Appropriate Risk Perception X NOT TESTED NA

Maintenance of corporate memory X NOT TESTED NA

Contract types X NOT TESTED NA

Employee Reward and Control Systems X NOT TESTED NA
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Appendix J - Baseline System Failure Probability
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Appendix K - System Failure Probability
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Rank Task Model Assumption P(F)

BASELINE 3.48%

1 Panic and stress screening 10% decrease in error rate; 50% increase in detection detection and correction 0.28%

: Frequency of Training E10 decrease in error rate; 50% increase in correction and detection 0.28%

3 Entry Level Welding Training E10 decrease in error rate; 25% increase in correction and detection 0.35%

4 Dexterity Measurement 1E10% decrease in error rate: 10% increase in correction and detection 0.37%

5 Communications Training E10 decrease in error rate; 10% increase in correction and detection 0.37%

6 Dive Team Briefing 50% decrease in error rate; 10% increase in correction and detection 0.74%

7 Individual Limitations Training 50% lower P(Welder-Diver Error). Perfect Positive Correlation of HOE 1.12%

8 Rest Assume perfect positive correlation of errors within each subtask, 50% decrease in error rat 1.12%

9 Experience 50% decrease in error rate; 50% increase in correction and detection 1.32%

10 Process Auditing Assume perfect positive correlation of errors within each subtask 2.22%

11 Focus on Reliability Assume perfect positive correlation of errors within each subtask 2.22%

12 Focus On Teamwork Assume perfect positive correlation of errors within each subtask 2.22%

13 Effective Crew Resource Management (CRM) 10% decrease in error rate; 50% increase in fragility, correction, and detection 2.22%

14 Risk Perception Assume perfect positive correlation of errors within each subtask 2.22%

15 Incentives Assume perfect positive correlation of errors within each subtask 2.22%

15 Panic and high stress Training 50% increase in detection and correction 2.62%

17 Emergency Preparedness 50% increase in correction and detection 2.62%

18 Command and Control 50% increase in correction and detection 2.62%

19 Two-Way Voice Communications 50% increase in correction and detection 2.62%

20 Aptitude Testing 20% decrease in error rate; 10% increase in detection and correction 2 70%

21 Age I'mits 10% decrease in fragility 2.94%

22 Medical Examination Standards 10% decrease in fragility 2.94%

23 Physical Fitness 10% decrease in fragility 2.94%

24 Gender 5% decrease in fragility 3.21%

25 Team Preparation Training 25% increase in detection and correction 3.27%

26 Team Requisite Variety 25% increase in correction and detection 3.27%

27 Leadership 10% increase in detection and correction 3.45%

28 Decision Making/Crisis Management 10% increase in detection and correction 3.45%

29 Conflict Resolution 10% increase in detection and correction 3.45%

m
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Appendix L - Example Model Analyses
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HOF application: Standard Electrical Mechanisms including gloves, knife switch, buddy diver, comms, GFI

Mechanism for Improvement: Detection, Correction, Fragility Improvement

Cost of Application: Cost of GFI, gloves, comms, knife switch, and second buddy diver

Inclusion in Specification:

Mean rate

Underwater Welding of error

Safety Tasks (Table 4

)

Electrical Safety Subtasks

Inspect torch cable 0.01000

Connect torch cable to appropriate terminal 0.01000

Determining amperage and voltage 00001

Secure ground to work 0.00100

Change electrode 0.00010

Keep electrode away from body 0.00001

Touching metal parts of dive rig 00010000

Adjust welding machine 00000000

P(F]E) P(D) P(C)

Probability

of Failure

(1-P(C)P(D)) Correlation

P(C)P(D) 1-P(C)P(D) xP(F)ExP(E) Considerations

Set up and operate (AC) video equipment

RiQQinq Safety Subtasks

Secure welding habitat to structure

Ballast habitat

Ensure secure work area

Rig to transfer load

Fit members

Gnnd weld

Clean work area

Removal of weld chamber

Explosive Safety Subtasks

Preheat steel

Weld root pass

Vertical-up weld

Down-hand weld

Operate electrode oven

Overhead weld

Respiration Safety Subtasks

Blow down welding habitat

Change headgear

Ventilate welding habitat

Control background gas

Enter welding habitat

00221200

0100000

0100000

01000

001000

000001

000100

00010

00001

00001

01000

03113

000010

000010

001000

001000

000010

00010

02040

000010

000100

000010

000010

0.0001

0.249 90 00%

1 90 00%

75 00%

25 00%

67 5%

22 500%

33%

78%

18%

78%

(This is not a fragility but an incidence rate) 025%

00% 100% 1 84%

00014 0.5 00% 100% 07%

RISK OF WELDING TASK SAFETY FAILURE 2 89%
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HOF application: Limitations Training (Perfect correlation of error rates for welder diver activities)

Mechanism for Improvement: 50% lower PfWekler-Drver Error). Perfect Positive Correlation of HOE

Cost of Application: Two hour classroom training

Inclusion in Specification:

Underwater Welding

Safety Tasks

Mean rate

of error Relevant Fragility

(Table 4

)

Analysis P(F]E) jpim. mi

of Failure

(1-

P(C)P(D))

P(C)P(D) 1-P(C)P(D) xP(F)ExP(

Electrical Safety Subtasks

Inspect torcti cable 00005

Conned torch cable to appropriate terminal 00001

Determining amperage and voltage 00500

Secure ground to work 00001

Change electrode 00500

Keep electrode away from body 00050

Touching metal parts of drve ng 00100

Adjust welding machine 00005

00500

Probability of death given

shoe* 249

Set up and operate (AC) video equipment 00500

00500

Probability of death given

shock 1

RiQQina Safety Subtasks

Secure welding habitat to structure 00500

Ballast habitat 00500

Ensure secure work area 000005

Rig to transfer load 00050

Fit members 00005

Grind weld 000005

Clean work area 000005

Removal of weld chamber 00500

00500 Injury results from impact (There is not i

Explosive Safety Subtasks

Preheat steel 00005

Weld root pass 00005

Vertical-up weld 00500

Down-hand weld 00500

Operate electrode oven 00005

Cvemead weld 00005

00500
Death or inlurv arven

explosion 9

Respiration Safety Subtasks

Blow down welding habitat 00005

Change headgear 00050

Ventilate welding habitat 00005

Control background gas 000005

Enter welding habitat 00005

0005 Death aiven Inhalation 5

00%

00%

00%

100%

0%

00%

00%

00%

00%

00%

00%

0%

00%

00%

00%

00%

00%

0%

100% 12%

100% 50%

RISK OF WELDING TASK SAFETY FAILURE 1 1 2%

'«/
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